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Foreword 
 

This report documents a wood material model that has been implemented into the dynamic 
finite element code, LS-DYNA, beginning with version 970. This material model was developed 
specifically to predict the dynamic performance of wood components used in roadside safety 
structures when undergoing a collision by a motor vehicle. This model is applicable for all 
varieties of wood when appropriate material coefficients are inserted. Default material 
coefficients for two wood varieties―southern yellow pine and Douglas fir―are stored in the 
model and can be accessed for use.  

This report is one of two that completely documents this material model. This report, Manual for 
LS-DYNA Wood Material Model 143 (FHWA-HRT-04-097), completely documents this material 
model for the user. The companion report, Evaluation of LS-DYNA Wood Material Model 143 
(FHWA-HRT-04-096), completely documents the model’s performance and the accuracy of the 
results. This performance evaluation was a collaboration between the model developer and the 
model evaluator. Regarding the model performance evaluation, the developer and the evaluator 
were unable to come to a final agreement regarding the model’s performance and accuracy. 
These disagreements are itemized and thoroughly discussed in section 17 of the second report.  

This manual will be of interest to research engineers associated with the evaluation and 
crashworthy performance of roadside safety structures, particularly those engineers responsible 
for the prediction of the crash response of such structures when using the finite element code 
LS-DYNA.  

 
 
 

Michael F. Trentacoste 
Director, Office of Safety 
 Research and Development  

 
Notice 

 
This document is disseminated under the sponsorship of the U.S. Department of Transportation 
in the interest of information exchange. The U.S. Government assumes no liability for the use of 
the information contained in this document. This report does not constitute a standard, 
specification, or regulation. 
 
The U.S. Government does not endorse products or manufacturers. Trademarks or 
manufacturers' names appear in this report only because they are considered essential to the 
objective of the document. 
 

Quality Assurance Statement 
 
The Federal Highway Administration (FHWA) provides high-quality information to serve 
Government, industry, and the public in a manner that promotes public understanding. 
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NOTE: volumes greater than 1000 L shall be shown in m3
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lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
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mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 
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kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
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ILLUMINATION 
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cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003) 



 

iii 

Preface 
The goal of the work performed under this program, Development of DYNA3D Analysis 
Tools for Roadside Safety Applications, is to develop wood and soil material models, 
implement the models into the LS-DYNA finite element code, and evaluate the 
performance of each model through correlations with available test data.(1)   

This work was performed under Federal Highway Administration (FHWA) Contract No. 
DTFH61-98-C-00071. The FHWA Contracting Officer’s Technical Representative 
(COTR) was Martin Hargrave.  

Two reports are available for each material model. One report is a user’s manual; the 
second report is a performance evaluation. This user’s manual, Manual for LS-DYNA 
Wood Material Model 143, thoroughly documents the wood model theory; reviews the 
model input; and provides example problems for use as a learning tool. It is written by 
the developer of the model. The performance evaluation for the wood model, Evaluation 
of LS-DYNA Wood Material Model 143, documents LS-DYNA parametric studies and 
correlations with test data performed by the model developer and by a potential end 
user.(2) The reader is urged to review this user’s manual before reading the evaluation 
report. A user’s manual and evaluation report  are also available for the soil model.(3,4)  

The development of the wood model was conducted by the prime contractor. The 
associated wood model evaluation effort to determine the model’s performance and the 
accuracy of the results was a collaboration between two contractors, with each 
evaluation intended to be independent of the other. The prime contractor developed and 
partially evaluated the wood model. The subcontractor performed a second independent 
evaluation of the wood model, provided finite element meshes for the evaluation 
calculations, and provided static post and bogie impact test data for correlations with the 
model. Others provided valuable material property data for clear wood pine, and static 
compression and bending test data for correlations. A final company implemented the 
wood model into the LS-DYNA finite element code. 

The developer and the evaluator were unable to come to a final agreement regarding 
several issues associated with the model’s performance and accuracy during the 
second independent evaluation of the wood model. These issues are itemized and 
thoroughly discussed in section 17 of the wood model evaluation report.(2) 
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INTRODUCTION 
This manual is divided into three main sections. Section 1, “Theoretical Manual,” begins 
with a general description of wood behavior, then continues with a detailed theoretical 
description of the model as implemented in LS-DYNA, version 970. It contains 
equations for all the formulations that are implemented. These include: 

• Transversely isotropic constitutive equations. 
• Yield surfaces with plastic flow. 
• Prepeak and late-time hardening. 
• Damage-based softening with erosion. 
• Rate effects for high strain-rate applications. 
 

One feature of the wood material model that is different from all other LS-DYNA material 
models implemented to date are the initialization routines that provide the user with 
default input parameters for southern yellow pine and Douglas fir. These initialization 
routines set the required strengths, stiffnesses, hardening, softening, and rate-effect 
parameters as a function of moisture content, temperature, and grade. Section 1 
describes all test data and assumptions that are used to set the default input 
parameters for pine and fir.  

Section 2, “User’s Manual,” describes the wood model input and output in LS-DYNA 
format. It includes descriptions of all input parameters, methods of fitting the model to 
the data, and a brief theoretical description of the model. This section is intended to be 
a manual for users who want to apply the model without delving deeply into the theory 
of the model. Most of the information contained in this section was forwarded for 
inclusion in the LS-DYNA User’s Manual.(5)  

Section 3, “Examples Manual,” provides example problems, including input files and 
output plots. These include four single-element simulations and one bogie impact 
simulation. These example problems are intended to help the user become familiar with 
the application of the wood material model.
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1. THEORETICAL MANUAL 
 
This section documents the theory of the wood material model in detail. It begins with 
an overview of wood behavior, followed by an overview of the formulation. Then 
detailed equations are provided for each feature of the model (elasticity, plasticity, 
hardening, damage, and rate effects). Data are also tabulated for southern yellow pine 
and Douglas fir that are needed to fit the model parameters. Throughout this report, 
numerous figures, particularly those of test data, are reproduced from the various 
references cited at the end of each caption. 

1.1 BEHAVIOR OF WOOD 

Wood is a variable material; however, certain trends are evident. Stiffness and strength 
properties vary as a function of orientation between the longitudinal, tangential, and 
radial directions. Figure 1 helps to illustrate this point. The longitudinal direction is the 
fiber or grain direction. Stiffness and strength are greatest in the fiber direction. The 
tangential and radial directions are transverse to the fiber direction, and tangential and 
perpendicular to the growth rings. For modeling purposes, the distinction between the 
tangential and radial directions is not always significant. Therefore, this manual uses the 
term perpendicular to the grain when no distinction is made between the radial and 
tangential directions, and parallel to the grain to describe the longitudinal direction.  

 

Figure 1. Wood material properties vary with orientation. The wood material 
coordinate system does not necessarily coincide with the board coordinate 

system. Source: American Society of Civil Engineers.(6) 

 

Cut-Away Tree 
Showing Board 
   Location 

Enlargement 
Of Board 
With Knot 



 

 4

Loading wood at angles to the grain has a significant effect on strength, as 
demonstrated in figure 2 for Douglas fir. The data are indicated by the dots. Hankinson’s 
formula is indicated by the surface. This formula is discussed in section 1.4. 

 

Figure 2. Ultimate tensile strength of Douglas fir measured in off-axis tests drops 
rapidly as the load is oriented at increasing angles to the grain. 

Source: Society of Wood Science and Technology.(7) 

The failure modes and measured stress-strain relationships of wood depend on the 
direction of the load relative to the grain and the type of load (tension, compression, or 
shear). The stress-strain relationships of wood in parallel tension, perpendicular tension, 
and shear are typically linear to brittle failure, while the stress-strain relationships of 
wood in parallel compression and perpendicular compression are typically nonlinear 
and ductile. 

Another factor that affects the measured stress-strain relationships is moisture content. 
The stress-strain behavior of southern yellow pine in tension and compression is plotted 
in figure 3 as a function of moisture content. The data indicate a factor of up to three 
variations in strength with moisture content. The data also demonstrate brittle behavior 
in tension versus ductile behavior in compression. Saturation refers to the fiber 
saturation point, which is approximately 23 percent. The behavior in shear was not 
measured.  

It is important to distinguish between the modes of failure because the effect of each 
mode on the ultimate strength of the wood posts may be quite different. For example, 
impacted wood posts have been observed to fail by parallel tensile and shear 
mechanisms. Thus, ultimate wood post failure occurs in the brittle modes (parallel to the 

Ring Angle 

Relative Compression 
Strength Grain Angle 
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grain), not the ductile modes. It is possible for perpendicular yielding to precede parallel 
failure, but not be catastrophic. 

  
(a) Tension parallel    (b) Compression perpendicular 

 
Figure 3. Measured stress-strain relationships of southern yellow pine 

depend on load direction (parallel or perpendicular), load type 
(tensile or compressive), and moisture content. 

 
Temperature also affects the behavior of wood. This is demonstrated in figure 4 for 
wood posts impacted by bogie vehicles at 9.4 meters per second (m/s). There is a 
difference of a factor of 3 in measured response (force and velocity) between the frozen 
and unfrozen posts, which are made of southern yellow pine. The measured response 
of the Douglas fir post lies between that of the frozen and unfrozen southern yellow pine 
posts. 

Wood exhibits progressive softening, as demonstrated by the splitting test data shown 
in figure 5 for southern yellow pine. In addition, wood exhibits modulus reduction and 
permanent plastic deformation, as demonstrated by the cyclic load curve shown in 
figure 6. Modulus reduction is indicated by the decrease in the elastic loading/unloading 
slopes as strain softening progresses. Permanent deformation is evident because the 
data unloads to zero stress at nonzero values of strain. The fracture area is the area 
under the load-displacement curve following peak stress. The data were obtained from 
splitting tests conducted by Stanzl-Tschegg, et al.(8) Although the data are for spruce 
wood, similar behavior is expected for pine and fir.  
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(a) Impact force      (b) Bogie velocity reduction 
 

 
(c) Post displacement 

 

Figure 4. Temperature affects the dynamic behavior of wood posts 
impacted by bogies at 9.4 m/s. 
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     (a) Softening curve       (b) Testing apparatus 
 

Figure 5. Wood exhibits progressive softening. 
Source: Forest Products Laboratory.(9) 

 

     (a) Softening curve       (b) Testing apparatus 
 

Figure 6. Wood exhibits modulus reduction and permanent deformation (splitting 
test data for spruce wood from Stanzi-Tschegg, et al.). Source: Kluwer Academic 

Publishers, with the permission of Springer Science and Business Media.(8) 
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Wood is a variable material. The variability of the clear wood properties of southern 
yellow pine is given in figure 7 for tension parallel and compression perpendicular at 
12-percent moisture content. The variability at other moisture contents is given in 
appendix A. Note that strength measurements vary by about a factor of 2 at each 
moisture content. In general, material properties vary as a function of position in a post, 
board, or test specimen. This is usually caused by natural variations in density; the 
presence of latewood and earlywood growth rings; and defects and growth 
characteristics, such as knots, checks, and shakes. Latewood is typically denser and 
stronger than earlywood. Knots, in particular, reduce the strength of wood. The 
reduction in strength depends on the knot size relative to the board size; the knot 
position (edge, center); and the wood parallel tensile strength, as shown in figure 8. 
Bogie impact tests indicate that the peak force in DS-65 posts is about 40 percent 
greater than that in grade 1 posts.(10) 

Finally, wood exhibits an increase in strength with strain rate. This is demonstrated in 
figure 9 for various wood species.(11) The stress ratio increases with impact velocity and 
is most pronounced in the perpendicular direction. The stress ratio is the dynamic-to-
static ratio measured in the Hopkinson bar tests. Rate effects are important when 
modeling vehicle collisions into wooden roadside structures. 

 

 
         (a) Tension parallel      (b) Compression perpendicular 
 

Figure 7. Variability of southern yellow pine clear wood data at 12-percent 
moisture content depends on load direction and type. 
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1000 pounds force per square inch (lbf/inch2) = 6.895 megapascals (MPa), 
1 inch/inch = 1 millimeter per millimeter (mm/mm) 

 
Figure 8. Wood material properties vary with position. Board strength depends on 

position and size of knot. Source: Society of Wood Science and Technology.(12) 
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(a) Parallel direction 

 
 

(b) Perpendicular direction 
Figure 9. Dynamic strength of wood increases with impact velocity in Hopkinson 

bar tests and is most pronounced in the perpendicular direction. 
Source: Pergamon, Elsevier Science Ltd.(11) 
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1.2 OVERVIEW OF FORMULATION 

The wood model consists of a number of formulations that are merged together to form 
a comprehensive model: 

• Elastic constitutive equations. 
• Failure criteria. 
• Plastic flow. 
• Hardening 
• Postpeak softening. 
• Strain-rate enhancement. 

 
Each of these formulations is discussed separately. The flowchart in figure 10 shows 
how each formulation interacts with the others.  

Each formulation requires specific input parameters, such as stiffness, strength, and 
fracture energy. The main source of the material properties listed in this section and 
used as default input parameters is the data measured by Forests Products Laboratory 
(FPL) for southern yellow pine as a function of moisture content.(13,14) FPL data are 
plotted in appendix A.  

It is important to note that the FPL data are for clear wood (small specimens without 
defects such as knots), whereas real-world posts are graded wood (grades 3, 2, 1, or 
DS-65). Clear wood is stronger than graded wood. Nevertheless, the clear wood data 
are used as the basis for the default material properties. To account for strength 
reductions as a function of grade, reduction factors are applied to the clear wood 
strengths. Our reduction factor methodology is thoroughly discussed in section 1.12. 
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Figure 10. Organization of wood material model. 
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1.3 ELASTIC CONSTITUTIVE EQUATIONS 

1.3.1 Measured Clear Wood Moduli 

Wood guardrail posts are commonly made of southern yellow pine or Douglas fir. The 
clear wood moduli of southern yellow pine are given in table 1 in terms of the parallel 
and perpendicular directions. The parallel direction refers to the longitudinal direction. 
The perpendicular direction refers to the radial or tangential direction, or any normal 
stress measurement in the R-T plane. These properties were measured as a function of 
moisture content.(13) Moisture content is more thoroughly discussed in section 1.9. 

Table 1. Average elastic moduli of southern yellow pine. 

 

The clear wood moduli of Douglas fir are given in table 2 as a function of the 
longitudinal (parallel), tangential, and radial directions. These properties were measured 
as a function of moisture content.(15) Only compressive moduli were measured. 

Table 2. Average elastic moduli of Douglas fir. 

Modulus of Elasticity (MPa) Poisson’s Ratio Moisture 
Content 

(%) 
Compression 
Longitudinal 

Compression 
Tangential 

Compression 
Radial 

 
LT 

 
LR 

 
TR 

 7 
13 
20 

16,345 
16,414 
15,193 

993 
779 
483 

959 
1,062 

166 

0.441 
0.449 
0.496 

0.295 
0.292 
0.274 

0.368 
0.374 
0.396 

 

1.3.2 Review of Equations 

Wood materials are commonly assumed to be orthotropic because they possess 
different properties in three directions―longitudinal, tangential, and radial. The elastic 
stiffness of an orthotropic material is characterized by nine independent constants. The 
nine elastic constants are E11, E22, E33, G12, G13, G23, ν12, ν13, and ν23, where E = 
Young’s modulus, G = shear modulus, and ν = Poisson’s ratio.  

The general constitutive relationship for an orthotropic material, written in terms of the 
principal material directions(16) is: 

 
Modulus of Elasticity (MPa) 

Poisson’s 
Ratio 

 
Moisture 
Content 

(%) 
Tension 
Parallel 

Tension 
Perpendicular 

Compression 
Parallel 

Compression 
Perpendicular 

 
LT 

 
LR 

 4 
 7 
12 
18 

Saturated 

16,469 
15,559 
15,503 
12,283 
11,283 

959 
1,000 

- 
552 
297 

18,345 
17,469 
16,572 
11,690 

7,959 

848 
766 
593 
414 
221 

0.291 
0.270 
0.260 
0.183 
0.162 

0.158 
0.133 
0.126 
0.078 
0.138 
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(1)

Subscripts 1, 2, and 3 refer to the longitudinal, tangential, and radial stresses and 
strains (σ1 = σ11, σ2 = σ22, σ3 = σ33, ε1 = ε11, ε2 = ε22, and ε3 = ε33, respectively). 
Subscripts 4, 5, and 6 are a shorthand notation that refers to the shearing stresses and 
strains (σ4 = σ12, σ5 = σ23, σ6 = σ13, ε4 = ε12, ε5 = ε23, and ε6 = ε13). As an alternative 
notation for wood, it is common to substitute L (longitudinal) for 1, R (radial) for 2, and T 
(tangential) for 3. The components of the constitutive matrix, Cij, are listed here in terms 
of the nine independent elastic constants of an orthotropic material:  

Δ−= /)1( 32231111 ννEC  (2)

Δ−= /)1( 13312222 ννEC  (3)

Δ−= /)1( 21123333 ννEC  (4)

Δ+= /)( 1123312112 EC ννν  (5)

Δ+= /)( 1132213113 EC ννν  (6)

Δ+= /)( 2231123223 EC ννν  (7)

1244 GC =  (8)

2355 GC =  (9)

1366 GC =           (10)

133221133132232112 21 ννννννννν −−−−=Δ  (11)
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The following identity, relating the dependent (minor Poisson’s ratios ν21, ν31, and ν32) 
and independent elastic constants, is obtained from symmetry considerations of the 
constitutive matrix: 

 
3,2,1, == jifor

EE j

ji

i

ij νν

 

 
(12) 

Another common assumption is that wood materials are transversely isotropic. This 
means that the properties in the tangential and radial directions are modeled the same 
(i.e., E22 = E33, G12 = G13, and ν12 = ν13). This reduces the number of independent 
elastic constants to five: E11, E22, ν12, G12, and G23. Furthermore, the Poisson’s ratio in 
the isotropic plane, ν23, is not an independent quantity. It is calculated from the isotropic 
relationship ν = (E – 2G)/2G, where E = E22 = E33 and G = G23. Transverse isotropy is a 
reasonable assumption if the difference between the tangential and radial properties is 
small in comparison with the difference between the tangential and longitudinal 
properties. 

The wood model formulation is transversely isotropic because the clear wood data in 
table 1 for southern yellow pine do not distinguish between the tangential and radial 
moduli. In addition, the clear wood data for Douglas fir in table 2 indicate that the 
difference between the tangential and radial moduli is less than 2 percent of the 
longitudinal modulus.  

1.3.3 Default Elastic Stiffness Properties 

Room-temperature moduli at saturation (23-percent moisture content) are listed in 
table 3. The same stiffnesses are used for graded wood as for clear wood. For southern 
yellow pine, the default Young’s moduli are average tensile values obtained from 
empirical fits to the clear wood data given in table 1 and shown in appendix B. These 
fits were published by FPL.(13) For Douglas fir, the default Young’s moduli and Poisson’s 
ratios are also obtained from empirical fits, made by the contractor, to the clear wood 
data given in table 2. The shear moduli were not measured. For both wood species, the 
parallel shear modulus is estimated from predicted elastic parameter tables for 
softwoods found in Bodig and Jayne.(16) The perpendicular shear modulus, G23, is 
calculated from the isotopic relationship between G23, E22, and ν23. For both wood 
species, the value of the perpendicular Poisson’s ratio used to estimate G23 is that 
measured for Douglas fir (because no values are listed in table 1 for pine). 
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Table 3. LS-DYNA default values for the room-temperature moduli (graded 
or clear wood) of southern yellow pine and Douglas fir at saturation. 

 
    

 

 

 

1.3.4 Orientation Vectors  
 
Because the wood model is transversely isotropic, the orientation of the wood specimen 
must be set relative to the global coordinate system of LS-DYNA. The transversely 
isotropic constitutive relationships of the wood material are developed in the material 
coordinate system (i.e., the parallel and perpendicular directions). The user must define 
the orientation of the material coordinate system with respect to the global coordinate 
system. Appropriate coordinate transformations are formulated in LS-DYNA between 
the material and global coordinate systems. Such coordinate transformations are 
necessary because any differences between the grain axis and the structure axis can 
have a great effect on the structural response. 

Keep in mind that the wood grain axis may not always be perfectly aligned with the 
wood post axis because trees do not always grow straight. It is up to the analyst to set 
the alignment of the grain relative to the wood post in LS-DYNA simulations.  

1.4 FAILURE CRITERIA 

Strength variations are readily modeled with failure criteria, which are also called yield 
criteria. Failure criteria relate critical combinations of stresses or strains to failure in a 
material. Two types of failure criteria are limit and interactive criteria. With limit criteria, 
like the Maximum Stress criterion, there is no interaction between the stresses, so 
failure depends on one component of stress or strain. With interactive criteria, like the 
Hashin criterion, the stresses interact, so failure depends on more than one component 
of stress or strain. The failure stresses/strains for the interactive and maximum 
stress/strain criteria typically agree in the material principal directions (uniaxial stress 
states). The criteria disagree on what constitutes failure in off-axis directions (biaxial 
and triaxial stress states).  

1.4.1 Measured Clear Wood Strengths 

Failure criteria are formulated with coefficients that are obtained from fits to measured 
strengths (peak strength in tension and shear, yield strength in compression). The clear 
wood strengths of southern yellow pine are given in table 4 in terms of the parallel, 
perpendicular, and shear directions. The shear strength refers to the parallel-to-the-

 Southern 
Yellow Pine 

 
Douglas Fir 

E11 or EL 
E22 or ET 
G12 or GLT 
G23 or GTR 
ν12 or νLT 

11,350 MPa 
247 MPa 
715 MPa 
88 MPa 

 0.16 

15,190 MPa 
  324 MPa 

784 MPa 
116 MPa 

 0.39 
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grain direction. No shear strength was reported for the perpendicular-to-the-grain 
direction because it is difficult to measure and interpret. The modulus of rupture is 
calculated from the beam-bending test results, in which the grain runs parallel to the 
length of the beam. It is not an input parameter of the wood material model. These 
strengths were measured as a function of moisture content.(13) The saturated data are 
measured at the fiber saturation point of approximately 23-percent moisture content. 

Table 4. Average strength data for southern yellow pine. 

 
Moisture 
Content 

(%) 

 
Tension
Parallel 
(MPa) 

 
Tension 

Perpendicular 
(MPa) 

 
Compression 

Parallel 
(MPa) 

 
Compression 
Perpendicular 

(MPa) 

 
Shear 

Parallel 
(MPa) 

Modulus 
of 

Rupture 
(MPa) 

 4 
 7 
12 
18 

Saturated 

119 
136 
146 
134 
101 

3.96 
4.26 
4.50 
3.38 
1.86 

76.7 
66.8 
52.0 
33.1 
21.5 

14.8 
13.0 
10.0 

7.3 
4.0 

19.9 
19.2 
16.8 
13.5 
 8.9 

129 
121 
107 
 76 
 49 

 

The clear wood strengths of Douglas fir are given in table 5. These strengths were 
obtained from a variety of sources. No single source provides a complete set of 
strengths. Some sources distinguish between the radial and tangential directions, while 
others report strengths in the perpendicular direction. Whenever perpendicular 
strengths were reported, they were listed under the subheading Tangential for the 
normal strengths and LT for the shear strengths. 
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Table 5. Average strength data for Douglas fir. 

Source 
 

Strength 
(MPa) 

Goodman 
and 

Bodig(7) 
(12%) 

Woodward 
and 

Minor(17) 
(12%) 

USDA 
Handbook(18) 

(Green) 

USDA 
Handbook(18) 

(12–13%) 

Patton-
Mallory,  
et al.(19) 

Tension 
Longitudinal 
Tangential 
Radial 

 
— 
— 
— 

 
123.1 

— 
3.8 

 
107.6 

2.3 
— 

 
— 

2.7 
— 

 
156.6 

3.2 
— 

Compression 
Longitudinal 
Tangential 
Radial 

 
51.9 
 5.1 
 4.3 

 
— 
— 
— 

 
23.9 

2.5 
— 

 
47.6 

5.3 
— 

 
45.2 

— 
— 

Shear 
LT 
LR 
RT 

 
 5.4 
 7.5 
 9.0 

 
— 

7.7 
— 

 
6.6 
— 
— 

 
9.7 
— 
— 

 
8.1 
— 
— 

1.4.2 Wood Model Failure Criteria 

The strength of wood is modeled as transversely isotropic for a number of reasons. 
First, the data measured by FPL do not distinguish between the strengths in the 
tangential and radial directions. Second, the data from Goodman and Bodig suggest 
that Douglas fir is about 15 percent weaker (compressively) in the radial direction than 
in the tangential direction.(7)  However, this difference in strength is small in comparison 
with the difference between the parallel and perpendicular directions. Table 4 indicates 
that the tensile strength measured parallel to the grain is about 30 to 50 times greater 
than that measured perpendicular to the grain. The compressive strength measured 
parallel to the grain is about five times greater than that measured perpendicular to the 
grain. 

The wood model failure criterion is formulated from six ultimate strength measurements 
obtained from uniaxial and pure-shear tests on wood specimens:  

XT Tensile strength parallel to the grain 
XC Compressive strength parallel to the grain 
YT Tensile strength perpendicular to the grain 
YC Compressive strength perpendicular to the grain 
S|| Shear strength parallel to the grain 

S⊥ Shear strength perpendicular to the grain 
 
Here, X and Y are the strengths parallel and perpendicular to the grain, respectively, 
and S is the shear strength.  
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Seven criteria were evaluated for modeling the failure of wood. The theoretical form of 
each candidate criterion and the graphical comparisons are given in appendix C. A 
reduced form of the Modified Hashin criterion was chosen for implementation for the 
following reasons:  

• Fits off-axis and uniaxial test data well. 
 

• Identifies mode of failure. 
 

• Allows wood to fail or yield in the perpendicular modes prior to catastrophic 
failure in the parallel modes.  
 

• Produces a smooth surface in stress space for the parallel modes and a 
separate smooth surface for the perpendicular modes.  
 

• Failure strength predictions in the parallel modes are moderate in 
comparison with the extreme strengths predicted by some of the other 
criteria.  
 

• Failure strength predictions in the perpendicular (isotropic) plane are realistic 
under transformation of stress.  
 

• Provides the greatest flexibility (compared with other failure criteria) in 
modeling failure and yielding in the perpendicular modes. 

 
The analytical form of the Hashin criterion is different for the parallel and perpendicular 
modes. 

Parallel Modes 

For the parallel modes, the failure criterion is composed of two terms involving two of 
the five stress invariants of a transversely isotropic material. These invariants are 

111 σ=I and 2
13

2
124 σσ +=I . This criterion predicts that the normal and shear stresses 

are mutually weakening (i.e., the presence of shear stress reduces the strength below 
that measured in the uniaxial stress tests). This form is equivalent to that discussed in 
appendix C under Modified Hashin or Extended Yamada-Sun. Failure occurs when 
f|| ≥ 0, where:  
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(13) 

 
 

 



 

 20

Perpendicular Modes 

For the perpendicular modes, the failure criterion is also composed of two terms 
involving two of the five stress invariants of a transversely isotropic material. These 
invariants are I2 = σ22 + σ33 and 3322

2
233 σσσ −=I . This form is similar to that discussed 

in appendix C under Modified Hashin, except that two of the three reported terms are 
retained (the parallel shear stress invariant term (I4) in equation 172 is neglected). This 
is because its effect on perpendicular failure was not evaluated in appendix C and no 
test data are available to aid in the evaluation. It is desirable to keep the failure criterion 
as simple as possible unless measured data suggest otherwise. Failure occurs when f⊥ 
≥ 0, where:  
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(14) 

 
Failure Surface Plots 
 
Four modes of failure are predicted: tension and compression failure parallel to the 
grain, and tension and compression failure perpendicular to the grain. Parallel shear 
failure is a subset of the parallel modes and perpendicular shear failure is a subset of 
the perpendicular modes. 

Each failure criterion is plotted in two dimensions in figure 11 in terms of the stress 
invariants of a transversely isotropic material. Separate plots are drawn for failure or 
yielding in the parallel and perpendicular modes. Each failure criterion is plotted in three 
dimensions in figure 12 in terms of the parallel and perpendicular stresses. Each 
criterion is a smooth surface (no corners). 
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(a) Parallel modes 

 
 

(b) Perpendicular modes 
Figure 11. Failure criteria for wood depend on four of the five invariants 

of a transversely isotropic material. 
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(a) Parallel modes 

 

 
(b) Perpendicular modes 

 
 

Figure 12. Failure criteria for wood produce smooth surfaces in stress space. 
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1.4.3 Default Strength Properties 

Room-temperature clear wood strengths at fiber saturation are listed in table 6. 
Strengths for southern yellow pine are average values obtained from empirical fits to the 
data previously reported by FPL in table 4 and reproduced in appendix B. Those for 
Douglas fir are based on the U.S. Department of Agriculture (USDA) Wood Handbook 
strengths previously reported in table 6.(18) The shear strength perpendicular to the grain 
has been included as an input parameter even though it was not measured for southern 
yellow pine. This is because it is included in the failure criterion that was selected. Here 
it is assumed that the shear strength perpendicular to the grain is 140 percent of the 
shear strength measured parallel to the grain. This percentage was chosen because the 
perpendicular shear strength measured by Goodman and Bodig for Douglas fir is 140 
percent greater than the parallel shear strength (average of σLT and σLR).(7) 

Table 6. LS-DYNA default values for room-temperature clear wood strengths 
of southern yellow pine and Douglas fir at fiber saturation.* 

 
 Southern 

Yellow Pine 
Douglas Fir 

XT 85.2 MPa 107.6 MPa 
XC 21.2 MPa 23.9 MPa 
YT 2.1 MPa 2.3 MPa 
YC 4.1 MPa 2.5 MPa 
S|| 9.1 MPa 6.6 MPa 
S⊥ 12.7 MPa 9.3 MPa 

    *Fiber saturation point is 23 percent for southern yellow 
     pine and 20 percent for Douglas fir. Perpendicular shear 

  strength is 140 percent of the parallel shear strength. 
 

The strength of graded wood posts is less than that of clear wood posts; therefore, the 
clear wood strengths in table 6 must be scaled down according to grade. One scale 
factor, QT, reduces the tensile and shear strengths as a function of grade. A second 
scale factor. QC, reduced the compressive strengths as a function of grade. Default 
scale factors for grade 1 are QT=0.43 and QC=0.63 for pine, and QT=0.40 and QC= 0.70 
for fir. Default scale factors for DS-65 are QT=0.80 and QC=0.93 for both pine and fir. 
Scale factors by grade are more thoroughly discussed in section 1.12. 

1.5 PLASTIC FLOW 

The plasticity algorithms limit the stress components once the failure criterion in 
equations 13 or 14 is satisfied. This is done by returning the stress state back to the 
yield surface.1  

                                                 
1 Two simple types of plasticity algorithms are those that reduce the moduli directly and those that scale 
back the stresses directly. Although simple to implement, such methods do not allow one to control plastic 
strain generation and do not necessarily satisfy the second law of thermodynamics. 
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Our traditional approach for modeling plasticity is to partition the stress and strain 
tensors into elastic and plastic parts. Partitioning is done with return mapping algorithms 
that enforce the plastic consistency conditions. Such algorithms allow one to control 
plastic strain generation. In addition, return mapping algorithms with associated flow 
satisfy the second law of thermodynamics. Associated flow is discussed in appendix D. 

1.5.1 Consistency Parameter Updates 

Separate plasticity algorithms are modeled for the parallel and perpendicular modes by 
enforcing separate consistency conditions. Each consistency condition is derived in 
appendix D. The solution of each consistency condition determines the consistency 
parameters Δλ⎥⎥ and Δλ⊥. The Δλ solutions, in turn, determine the stress updates. 

Parallel Modes 

The parallel failure criterion from equation 13 is redefined as f|| (I1, I4) ≥ 0, with: 

 

 (15)
 

where I1 and I4 are two of the five invariants of a transversely isotropic material. In this 
case, the expression Δλ|| is:  
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Δλ|| is calculated from specification of the total strain increments and the yield function 
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4I , are calculated from the trial 

elastic stresses (see section 1.5.2). For the failure surface function in equation 15, the 
partial derivatives in equation 16 are:  
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Perpendicular Modes 
 
The perpendicular failure criterion from equation 14 is redefined as f⊥ (I3, I4) ≥ 0, with:  
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where I2 and I3 are two of the five invariants of a transversely isotropic material. In this 
case, the expression for Δλ⊥ is:  
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Δλ⊥ is calculated from specification of the total strain increments and the yield function 
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2I and *

3I are the trial elastic stress invariants. For the failure 
surface function in equation 21, the partial derivatives in equation 22 are:  
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1.5.2 Elastoplastic Stress Updates 

The stresses are readily updated from the total strain increments and the consistency 
parameters:  
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where: 

n = nth time step in the finite element analysis 

σ*
ij = trial elastic stress updates calculated from the total strain increments, Δεij, prior 

to application of plasticity 

Total strain increments are calculated by the finite element code from the dynamic 
equations of motion and the time step.  

Each normal stress update depends on the consistency parameters and failure surface 
functions for both the parallel (Δλ = Δλ|| and f = f||) and perpendicular (Δλ = Δλ⊥ and 
f = f⊥) modes. Each shear stress update depends on just one consistency parameter 
and failure surface function. If neither parallel nor perpendicular yielding occurs 

0( *
|| <f and )0* <⊥f , then Δλ = 0 and the stress update is trivial: 1*1ˆ ++ = n

ij
n
ij σσ . 

For the stress updates in equation 27, the partial derivatives are:  
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1.6 HARDENING 

Wood exhibits prepeak nonlinearity in compression parallel and perpendicular to the 
grain. Perpendicular hardening was previously demonstrated in figure 3(b) for clear 
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pine. A choice was made between two possible approaches for modeling prepeak 
nonlinearity. The first approach was to model bilinear hardening behavior by specifying 
initial and hardening moduli. This approach simulates a sudden change in modulus. 
However, real data, such as that previously shown in figure 3(b), exhibits a gradual 
change in modulus. The second approach was to model a translating yield surface that 
simulates a gradual change in modulus. This is the chosen approach. 

1.6.1 Model Overview 

Our approach is to define initial yield surfaces that harden (translate) until they coincide 
with the ultimate yield surfaces, as demonstrated in figure 13 for the parallel modes. 
Separate formulations are modeled for the parallel and perpendicular modes. The initial 
location of the yield surface determines the onset of plasticity. The rate of translation 
determines the extent of nonlinearity. 
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(a) Initial and ultimate yield surfaces 
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(b) Stress-strain behavior 

Figure 13. Prepeak nonlinearity is modeled in compression with translating yield 
surfaces that allow user to specify the hardening response. 
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For each mode (parallel and perpendicular), two hardening parameters must be 
defined. The first parameter, N, determines the onset of nonlinearity of the load-
deflection or stress-strain curves. For example, consider the case where the user wants 
prepeak nonlinearity to initiate at 60 percent of the peak strength. The user inputs 
N = 0.4 so that 1 – N = 0.6. The second parameter, c, determines the rate of hardening 
(i.e., how rapidly or gradually the load-deflection or stress-strain curves harden). If the 
user wants rapid hardening, then a large value of c is input (e.g., c = 1000). If the user 
wants gradual hardening, then a small value of c is input (e.g., c = 10). The value of c 
needed for any particular fit depends on the properties of the material being modeled. It 
is selected by running simulations (single-element simulations are fastest) with various 
values of c and comparing those simulations with data. Hardening model equations are 
given in section 1.6.3. 

In addition to modeling prepeak nonlinearity as shown in figure 13, a separate 
formulation models postpeak hardening, as shown in figure 14. Instead of coinciding 
with the ultimate yield surface, the initial yield surface passes through the ultimate yield 
surface. The larger the value of the input parameter Ghard, the more pronounced the 
postpeak hardening. A zero value for Ghard will produce perfectly plastic behavior. The 
default value is zero. Currently, Ghard controls both the parallel and perpendicular 
behaviors simultaneously. 
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Figure 14. Postpeak hardening is modeled in compression 
with positive values of the parameter Ghard. 
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1.6.2 Default Hardening Parameters 

Default hardening parameters for clear wood pine and fir are given in table 7. These 
hardening parameters were set by the contractor by correlating LS-DYNA simulations 
with compression tests conducted on 15- by 15- by 305-centimeter (cm) timbers.(2) 
Values of N|| = 0.5 and N⊥ = 0.4 were fit to the timber compression data for parallel and 
perpendicular behavior, respectively. These values for N|| and N⊥ are independent of 
grade, temperature, and moisture content. Values for c|| and c⊥ depend on the wood 
grade, but are independent of temperature and moisture content. Good fits to the data 
were obtained with the following formulas:  

 larPerpendicu
Q

cParallel
Q

c
2
c

2
c

100400
|| == ⊥

 
(35)

 
Qc = compression strength-reduction factor for graded wood discussed in section 1.12. 

Table 7. Default hardening parameters for clear wood southern 
yellow pine and Douglas fir. 

Parallel Perpendicular  
Wood N|| c||  N⊥ c⊥  

Southern Yellow Pine 
Douglas Fir 

0.5 
0.5 

400 
400 

0.4 
0.4 

100 
100 

 

1.6.3 Hardening Model Theory 

Parallel Modes 

The state variable that defines the translation of the yield surface is known as the 
backstress and is denoted by αij. Prepeak nonlinearity is modeled in compression, but 
not shear, so the only backstress required for the parallel modes is α11. The value of the 
backstress is α11 = 0 upon initial yield and α11 = –N|| Xc at ultimate yield (in uniaxial 
compression). The maximum backstress occurs at ultimate yield and is equal to the 
total translation of the yield surface in stress space. 

The hardening rule defines the growth of the backstress. Hardening rules are typically 
based on stress or plastic strain. Hardening is based on stress. This is accomplished by 
defining the incremental backstress:  

 tGc ΔΔ−=Δ ||)( 1111||||11 εασα &
 

(36)
where: 

c|| = user input parameter that determines rate of translation 
G|| = function that properly limits the increments 
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σ11 – α11 = reduced stress that determines direction of translation (longitudinal) 
||ε&Δ  = effective strain-rate increment parallel to the grain 

Dt = time step 
 

These terms are internally calculated by the material model and LS-DYNA, and are 
included to keep the hardening response independent of time step, time-step scale 
factor, and strain increment. The effective strain rate is a scalar value that is equal to: 

 2
LR

2
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2
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(37)

 

The function G|| restricts the motion of the yield surface so that it cannot translate 
outside the ultimate surface.(20) The functional form of G|| is determined from the 
functional form of the yield surface and the longitudinal stress definition. A brief 
derivation is given in appendix E. Thus, it is defined as: 
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The value of the limiting function is G|| = 1 at initial yield (because α11 = 0) and G|| = 0 at 
ultimate yield (because α11 = N|| F

11σ ). Thus, G|| limits the growth of the backstress as 
the ultimate surface is approached. If postpeak hardening is active, then the minimum 
value is maintained at G|| = Ghard rather than G|| = 0. The ultimate yield surface is 
defined from equation 13 as:  
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For the case of uniaxial compressive stress (no shear), the ultimate yield surface 
reduces to F

11σ  = XC. 

Perpendicular Modes 

Prepeak nonlinearity is modeled in compression, but not shear, so the backstress 
components required are α22 and α33. The value of the backstress sum is α22 + α33 = 0 
upon initial yield and α22 + α33 = –N⊥Yc at ultimate yield (biaxial compression without 
shear). The backstress increments are defined as follows: 
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where: 

c⊥ = user input parameter that determines rate of translation 
⊥Δ ε&  = effective strain-rate increment perpendicular to the grain: 
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The functional form of G⊥ is determined from the functional form of the yield surface in 
equation 14 as: 
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The value of G⊥ ranges from 1 at initial yield to 0 at ultimate yield. If postpeak hardening 
is active, then the minimum value is G⊥ = Ghard rather than G⊥ = 0. The ultimate yield 
surface is defined from equation 14 as:  
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Consider the case of biaxial compressive stress (I3 = 0). Initially, α22 + α33 = 0, so 
G⊥ = 1. Ultimately, α22 + α33 = –N⊥ Yc and FI2  = σ22 + σ33 = Yc, so G⊥ = 0. 

1.6.4 Implementation Aspects 

The plasticity model discussed in the section 1.5 is modified to account for compressive 
hardening. Modifications are made to the failure surface definitions and the stress 
updates.  

Failure Surface Definitions With Hardening 

For the parallel modes, initial yielding occurs when f|| > 0, with:  
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For the perpendicular modes, initial yielding occurs when f⊥ > 0, with:  
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No modifications are necessary for the tensile modes.  

Stress and Backstress Updates 

Total stress is updated from the sum of the initial yield stress plus the backstress:  
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1.7 POSTPEAK SOFTENING 

In addition to predicting the critical combination of stresses at failure, modeling post-
failure degradation of these stresses (softening) is particularly important. Postpeak 
degradation occurs in the tensile and shear modes of wood. This was previously 
demonstrated in figure 3. 

1.7.1 Degradation Model 

Degradation models are used to simulate postpeak softening. A choice was made 
between simple and sophisticated approaches for modeling degradation. Simple 
degradation models fit into one of three categories: instantaneous unloading, gradual 
unloading, and no unloading (constant stress after yielding, as modeled with plasticity). 
Although tensile and parallel shear failures are brittle, instantaneous unloading over one 
time step would cause dynamic instabilities. An alternative is to gradually unload over a 
number of time steps. Although simple to implement, such an ad hoc treatment will 
produce mesh-size dependency. This means that the same physical problem will 
produce different results for different mesh configurations. Two other disadvantages of 
these formulations are: (1) stiffness is not degraded in conjunction with strength and 
(2) progressive softening is independent of subsequent loading. Both of these behaviors 
are unrealistic.  
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A more sophisticated approach is to model degradation with a damage formulation. A 
scalar damage parameter, d, transforms the stress tensor associated with the 
undamaged state, ijσ , into the stress tensor associated with the damaged state, σij :  

ijij d σσ )1( −=
 

(48)
 

The stress tensor ijσ  is calculated by the plasticity and viscoplasticity algorithms prior 
to application of the damage model. The damage parameter ranges from zero for no 
damage to approaching unity for maximum damage. Thus, 1 – d is a reduction factor 
associated with the amount of damage. A distinct advantage of damage formulations 
over ad hoc formulations is that they degrade stiffness in conjunction with strength. 
Experimental evidence for stiffness degradation was previously shown in equation 16. 
In addition, progressive degradation does not occur over one time step; it depends on 
subsequent loading (stress spikes and transient waves will not cause spurious early 
failures because the load is not sustained). However, mesh-size dependency is still an 
issue and is discussed in section 1.7.2. This is the chosen approach. 

Damage Parameter Functional Form 

Two damage formulations are implemented for modeling degradation of wood: one 
formulation for the parallel modes and a separate model for the perpendicular modes:  
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Perpendicular Modes 
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For each formulation, damage is specified by three user-supplied parameters. For the 
parallel modes, these parameters are A, B, and ||maxd . For the perpendicular modes, 

these parameters are C, D, and ⊥maxd . The parameter maxd limits the maximum level 
of damage. It ranges between 0 and 1. No damage accumulates if maxd = 0. Typically, 

maxd ≈ 1, which means that the maximum damage level attained is d ≈ 1. This, in turn, 
means that the stiffness and strength are ultimately degraded to zero. 



 

 35

The evolution of the damage parameter d is shown in figure 15 as a function of τ. The 
strain-based energy term τ is calculated by the model. Its analytical form for both the 
parallel and perpendicular modes is discussed in subsequent paragraphs. Damage 
accumulates when τ exceeds an initial damage threshold τ0. Four curves are shown in 
figure 15 that correspond to four sets of softening parameters, C and D. The parameter 
C sets the midslope of the curve near d = 0.5 (larger values of C produce larger 
midslopes). The parameter D sets the initial slope near the threshold (smaller values of 
D produce larger initial slopes). Here, τ0 ≈ 0.055.  

 
 
 

Figure 15. Damage d accumulates with energy τ once 
an initial threshold τ0 is exceeded. 

Softening is demonstrated in figure 16 for tensile failure perpendicular to the grain. Four 
softening curves are shown, which correspond to the four sets of softening parameters 
previously used in figure 15. The parameters C and D shape the softening curve. Larger 
values of D produce a flatter peak. Larger values of C produce more severe softening. 
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Figure 16. Softening depends on the values of the damage 
parameters C and D (calculated with dmax = 1). 

Damage Parameter Strain Basis 

Damage formulations are typically based on strain, stress, or energy. The wood model 
bases damage accumulation on the history of strains. One of the more famous strain-
based theories is that proposed by Simo and Ju for modeling damage in isotropic 
materials such as concrete.(21) They base damage on the total strains and the 
undamaged elastic moduli. They do this by forming the undamaged elastic strain energy 

norm, .*
klklklijijklC εσεετ ==  For simplicity,2 we have defined ,*

ijijklkl C εσ = where 

Cijkl is the linear elasticity tensor previously given in equation 1. One way of expanding τ 
is:  
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Separate strain energy norms are implemented for modeling damage accumulation in 
the parallel and perpendicular modes. 

                                                 
2 The stress tensor *

ijσ  is not equal to the elasto-viscoplastic stress tensor ijσ  nor to the damaged 

elastoplastic stress tensor ijσ . It is a fictitious stress that is based on the total strain and is defined for 

convenience. 
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Parallel Modes 

Damage in the parallel modes is based on the following strain energy norm:  
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Wood is being treated as transversely isotropic; therefore, τ|| was chosen to be the 
portion of the undamaged elastic strain energy that is associated with the parallel 
modes (specific terms from equation 51 were retained that contain the parallel normal 
and shear strains). Damage accumulates when τ|| exceeds

||0τ . The initial threshold 
||0τ  

is not a user-supplied parameter. It is calculated and permanently stored by the wood 
material model at the time that the parallel failure criterion is first satisfied in tension. 
Damage accumulates in both the tensile and parallel shear modes, but not the 
compressive mode.  

Perpendicular Modes 

Damage in the perpendicular modes is based on the following strain energy norm:  
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The term τ⊥ was chosen to be the portion of the undamaged elastic strain energy that is 
associated with the perpendicular modes (specific terms from equation 51 are retained 
that contain the perpendicular normal and shear strains). Damage accumulates when τ⊥ 
exceeds 

⊥0τ . The initial threshold 
⊥0τ is not a user-supplied parameter; it is calculated 

and permanently stored by the wood material model once the perpendicular failure 
criterion is satisfied in tension. Damage accumulates in both the tensile and 
perpendicular shear modes, but not in the compressive mode.  

Strength Coupling 

Another issue is strength coupling, in which degradation in one direction affects 
degradation in another direction. If failure occurs in the parallel modes, then all six 
stress components are degraded uniformly. This is because parallel failure is 
catastrophic and will render the wood useless. The wood is not expected to carry load in 
either the parallel or perpendicular directions once the wood fibers are broken. If failure 
occurs in the perpendicular modes, then only the perpendicular stress components are 
degraded. This is because perpendicular failure is not catastrophic (the wood is 
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expected to continue to carry the load in the parallel direction). Based on these 
assumptions, the following degradation model is implemented:  

 ))(),(max( || ⊥= ττ dddm  
(54)
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1.7.2 Regulating Mesh-Size Dependency 

If a model is mesh-size dependent, then different mesh refinements produce different 
computational results. This is undesirable and is the result of modeling element-to-
element variation in the fracture energy instead of modeling uniform fracture energy. 
Fracture energy is the area under the stress-displacement curve in the softening 
regime. If the fracture energy is not constant from element to element, then excess 
damage will accumulate in the smallest elements because the fracture energy is less in 
the smaller elements. Regulatory methods eliminate this variation and the excess 
damage accumulation.  

Fracture energy is a property of a material and special care must be taken to treat it as 
such. There are a number of approaches for regulating mesh-size dependency. One 
approach is to manually adjust the damage parameters as a function of element size to 
keep the fracture energy constant. However, this approach is not practical because the 
user would have to input different sets of damage parameters for each size element. A 
more automated approach is to include an element-length scale in the model. This is 
done by passing the element size through to the wood material model and internally 
calculating the damage parameters as a function of element size. Finally, viscous 
methods for modeling rate effects also regulate mesh-size dependency. However, if 
rate-independent calculations are performed, then viscous methods will be ineffective.  

The wood model regulates mesh-size dependency by explicitly including the element 
size in the model. The element size is calculated as the cube root of the element 
volume. Softening in the parallel and perpendicular modes is regulated separately 
because different fracture energies are measured in the parallel and perpendicular 
modes.  
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Parallel Mode Regularization 

The relationship between the parallel fracture energy, Gf ||; the softening parameters, A 
and B; and the element size, L, is:  
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This expression for the fracture energy was derived by integrating the analytical stress-
displacement curve:  
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where: 

x = displacement 
x0 = displacement at peak strength, XT 
 
To accomplish the integration, the damage threshold difference is related to the 

stiffness and displacement as follows: ⎟
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form of d is given by equation 49 with dmax = 1.  

To regulate mesh-size dependency, the wood model requires values for B, 
||IfG , and 

||IIfG , rather than A and B. When the parallel failure criterion is satisfied, the wood 

material model internally solves equation 62 for the value of A based on the initial 
element size, initial damage threshold, and fracture energy for the particular mode of 
parallel failure that is initiated (tensile, shear, or compressive):  
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The fracture energy varies with failure mode in the following manner:  
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When failure is entirely tensile (σ11= XT, σ12 = σ13 = 0), then 
|||| Iff GG =  and softening is 

brittle. When failure is entirely shear )0,( 11
2
||

2
13

2
12 ==+ σσσ S , then 

|||| IIff GG =  and 

softening is more gradual. When failure is compressive (σ11 = XC, σ12 = σ13 = 0), then 
Gf = ∞ and no softening occurs. 

Example stress-strain curves for these failure modes are given in figure 17. They were 
calculated for the default clear wood moduli and strengths at 12-percent moisture 
content. Default hardening and fracture energies, however, were not set at the time 
these figures were created. The parallel fracture energies simulated are seven times the 
perpendicular fracture energies. 

Perpendicular Mode Regularization 

An expression similar to equation 62 is readily obtained for the fracture energy 
perpendicular to the grain: 

 
)1log(1L0 D

CD
DG f +⎟

⎠
⎞

⎜
⎝
⎛ +

=
⊥⊥ τ

 
(66)

 

To regulate mesh-size dependency, the wood model requires input values for D, IfG , 

and IIfG , rather than C and D.  

When the perpendicular failure criterion is satisfied, the wood material model internally 
solves equation 66 for the value of C based on the initial element size, initial damage 
threshold, and fracture energy for the particular mode of perpendicular failure that is 
initiated (tensile, shear, or compressive):  
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Fracture energy varies with failure mode in the following manner:  
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When failure is entirely tensile (σ22 + σ33 = YT, σ23 = 0), then 
⊥

=⊥ Iff GG and softening is 

brittle. When failure is entirely shear )0,( 3322
2

3322
2
23 =+=− ⊥ σσσσσ S , then 

⊥
=⊥ IIff GG and softening is more gradual. When failure is compressive 

)0,( 3322
2
233322 =−=+ σσσσσ CX , then Gf = ∞ and no softening occurs. 

Stress-strain curves for these failure modes are given in figure 18. They were calculated 
for the default moduli, strengths, and fracture energies at 12-percent moisture content. 
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(a) Tensile softening 
 

 
 

(b) Shear softening 
 

 
 

(c) Compressive yielding 
 

Figure 17. Softening response modeled for parallel modes 
of southern yellow pine. 
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(a) Tensile softening 

 
(b) Shear softening 

 
 

(c) Compressive yielding 
 

Figure 18. Softening response modeled for perpendicular modes 
of southern yellow pine. 
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1.7.3 Default Damage Parameters  

The damage model requires input of eight damage parameters―four for the parallel 
modes (B, 

||IfG , 
||IIfG , and dmax||) and four for the perpendicular modes (D, 

⊥IfG , 

⊥IIfG , and dmax⊥). Default values for the maximum damage parameters are 

dmax|| = 0.9999 and dmax⊥ = 0.99. These values are slightly less than 1. This is to avoid 
potential computational difficulties associated with zero stiffness for dmax = 1. In 
addition, the parallel damage parameter is closer to 1 than the perpendicular parameter. 
This is because elements erode with maximum parallel damage, but not with maximum 
perpendicular damage (see section 1.7.4). One percent of the original perpendicular 
stiffness and strength is retained to avoid computational difficulties. Default shape 
parameters are B = D = 30. Data are not available to set the shape of the softening 
curves, so they have been arbitrarily chosen. Default fracture energies are based on the 
FPL data reported in appendix A for fracture intensities. Fracture energies are derived 
from the fracture intensities, as discussed in subsequent paragraphs. Default values for 
all eight input parameters are given in table 8 for room-temperature clear wood pine and 
fir at saturation. 

Table 8. LS-DYNA default values for room-temperature clear wood softening 
parameters for southern yellow pine and Douglas fir at saturation. 

Perpendicular Parallel  
 

D ⊥IfG  
(MPa⋅cm) 

⊥IIfG  
(MPa⋅cm) 

 
dmax⊥

 
B ||IfG  

(MPa⋅cm)
||fIIG  

(MPa⋅cm) 

 
dmax|| 

Pine 
Fir 

30 
30 

0.0210 
0.0210 

0.0788 
0.0788 

0.99 
0.99 

30 
30

2.2344 
2.2344 

8.3843 
8.3843 

0.9999 
0.9999 

 

Fracture energies for Douglas fir are set equal to those for southern yellow pine. This is 
because fracture intensity data are not available for Douglas fir, and grade 1 bogie-post 
impact simulations correlated with test data suggest that this assumption is 
reasonable.(2) 

Measured Fracture Intensities 
 
The effect of moisture content on the mode I and mode II fracture intensities of southern 
yellow pine is given in table 9 for the perpendicular modes. These data were measured 
with the load applied in the tangential direction and the crack propagation in the 
longitudinal direction.(13) Fracture intensities were measured from compact-tension 
specimens (7.62 by 8.26 by 2.0 cm) and center-split beams (65 by 6 by 2 cm). No data 
are reported for the parallel modes. Published data indicate that the mode I fracture 
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intensities measured parallel to the grain are about seven times those measured 
perpendicular to the grain.3(16)  

Table 9. Average fracture intensity data for southern yellow pine 
measured perpendicular to the grain. 

Moisture 
Content 

(%) 

 
KI 

(MPa-cm1/2) 

 
KII 

(MPa-cm1/2) 
4 
7 

12 
18 

Saturated 

4.69 
5.03 
4.66 
3.85 
2.85 

18.54 
20.41 
20.65 
18.39 
13.71 

 

Derived Fracture Energies  

The mode I and mode II fracture energies are related to the fracture intensities through 
the following analytical expressions:  
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where: 

CI and CII = constants related to the moduli of an orthotropic material:(22) 
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Here, the compliance coefficients, Sij, are the reciprocals of the elastic moduli:  
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3 Personal communication with Dr. David Kretschmann of FPL. 
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The values of CI and CII vary with moisture content because moduli vary with moisture 
content (see appendix B).  

Tensile and shear perpendicular fracture energies as a function of moisture content are 
derived from equation 69 and FPL’s quadratic equations for fracture intensity as a 
function of moisture content. Default fracture energies at saturation are given in table 10 
for the perpendicular modes of pine and fir. These values are default values regardless 
of the grade or temperature of the wood. 

No fracture intensity or energy data are available for the parallel modes, so default 
values are based on LS-DYNA bogie-post impact simulations correlated with test 
data.(2) Correlations were made for grade 1 pine and fir posts, DS-65 pine posts, and 
frozen grade 1 pine posts.  

Good room-temperature grade 1 correlations (pine and fir) are obtained when the 
fracture energy parallel to the grain is 50 times greater than the fracture energy 
perpendicular to the grain. This parallel-to-perpendicular factor of 50 for energy is 
consistent with a parallel-to-perpendicular factor of 7 for intensity once equation 69 is 
applied (72 ≈ 50).(16) In addition, good DS-65 correlations are obtained with a factor of 
85, which indicates that the parallel fracture energy depends on the grade. To 
accommodate variation with grade, the default parallel-to-the-grain fracture energies are 
modeled as:  

TIIfIIf

TIfIf

QGG

QGG
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Table 10. Room-temperature clear wood fracture energies for southern 
yellow pine and Douglas fir as a function of moisture content 

(derived from measured fracture intensities). 

Perpendicular Parallel  
Moisture 
Content 

(%) 
IfG  

(MPa⋅cm) 
IIfG  

(MPa⋅cm)
IfG  

(MPa⋅cm)
IIfG  

(MPa⋅cm) 

4 
7 

12 
18 

Saturated 

0.0204 
0.0227 
0.0225 
0.0219 
0.0210 

0.0768 
0.0945 
0.1028 
0.1035 
0.0788 

2.171 
2.415 
2.394 
2.330 
2.234 

8.172 
10.055 
10.938 
11.012 
8.384 

 

These equations indicate that the default fracture energy of clear wood, parallel to the 
grain, is 106 times greater than the default fracture energy perpendicular to the grain. 
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Default fracture energies derived from the above equations are given in table 10 for the 
parallel modes of pine and fir. 

1.7.4 Modeling Breakaway  

Complete failure and breakup of a wood post is simulated with element erosion.4 The 
erosion location is determined by the wood model from the physics of the problem. 
Dynamic instability is not an issue because the element erodes after it loses all strength 
and stiffness. In addition, mesh-size sensitivity is regulated through the damage 
formulation.  

Parallel damage is catastrophic because cracking occurs across the grain, which breaks 
the fibers or tubular cells of the wood. An element will automatically erode if it fails in the 
parallel mode and the parallel damage parameter exceeds d|| = 0.99. Recall that default 
dmax|| = 0.9999, so the element erodes just prior to accumulating maximum damage. All 
six stress components are degraded with parallel damage, so the element loses nearly 
all strength and stiffness before eroding. If the user sets dmax|| < 0.99, then erosion will 
not occur. 

Perpendicular damage is not catastrophic because cracking occurs between the fibers, 
causing the wood to split at relatively low strength and energy levels. The fibers are not 
broken. An element does not automatically erode if it fails in the perpendicular mode. 
This is because only three (sR, sT, and sRT) of the six stress components are degraded 
with perpendicular damage. Since erosion does not automatically occur, dmax⊥ is set 
to 0.99 instead of 0.9999 so that the element retains 1 percent of its elastic stiffness and 
strength. In this way, computational difficulties associated with extremely low stiffness 
and strength will hopefully be avoided. As an option, a flag is available, which, when set, 
allows elements to erode when the perpendicular damage parameter exceeds 
d⊥ = 0.989. Setting this flag is not recommended unless excessive perpendicular 
damage is causing computational difficulties. As an additional precaution, an element 
will erode if d⊥ > 0.98, and the perpendicular normal and shear strains exceed a 
predefined value of 90 percent.  

1.8 RATE EFFECTS 

A number of approaches are available to accommodate strain-rate sensitivity. Simple 
approaches scale the input strengths or moduli as a function of strain rate. More 
sophisticated approaches use viscoplastic mechanisms. Viscoplastic mechanisms 
retard the development of plasticity, which allows the stress state to exceed the static 

                                                 
4 Typically, erosion is more computationally efficient than the alternative approach of modeling fracture 
surfaces using tied surfaces with failure. One drawback of the tied surface approach is that an interface 
model (criteria) must be developed and validated for the tied nodes because the wood model is for 
elements, not interfaces. Another drawback is that the user must mesh the entire model with tied 
interfaces or else guess the failure location prior to running the calculation in order to specify the tied 
surface location. This is not practical. Other drawbacks are dynamic instability caused by sudden tied-
node failure and mesh-size sensitivity. 
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failure surface. Viscoplastic mechanisms also increase the stiffness in conjunction with 
strength if plastic hardening is modeled in the prepeak regime.  

Both types of formulations are easy to implement and are computationally efficient. 
Therefore, two methods are implemented. One method scales each strength as a 
function of strain rate, effectively expanding the failure surface. The second method is 
viscoplastic. Both methods are discussed here. However, the shifted surface method is 
the easiest to fit, and it is the only method that has been validated to date, so it is the 
only active option in the wood model at this time.  

1.8.1 High Strain-Rate Data 

A common test for measuring strain-rate effects is the split Hopkinson pressure bar 
(SHPB). Hopkinson bar data for pine are shown in figure 19.(11) Here, the dynamic-to-
static stress ratio is plotted as a function of impact velocity for both the parallel and 
perpendicular directions. Rate effects are more pronounced in the perpendicular 
direction than in the parallel direction. 

Also plotted in figure 19 are theoretical curves derived from shock theory (i.e., 
conservation of mass and momentum across a shock front). The theoretical stress 
enhancement factors are:  
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where: 

ℜ = ratio of dynamic-to-static stress 
ρ = average wood density 
ρs = wood solid phase density 
α = empirical shape factor for the stress-strain curve 
 
Values of ρs = 1500 kilograms per square meter (kg/m2) and α = 1.35 are reported by 
Reid and Peng(11) for wood and pine. For southern yellow pine with a density of ρ = 
530 kg/m2 at 12-percent moisture content, the stress enhancement curves reduce to:  
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where V is measured in m/s. 

These curves indicate that the stress enhancement in the perpendicular direction is 
much greater than that in the parallel direction. However, the curves tend to 
underestimate the stress enhancement, particularly at low-impact velocities (see figure 
19). To fit the rate-effect model parameters, the stress enhancement ratios need to be 
derived as a function of strain rate. To do this, impact velocity must be converted to 
strain rate. However, Reid and Peng(11) did not report this conversion. 

 

 
 
 

Figure 19. Hopkinson bar tests indicate that the measured strength of pine 
increases with impact velocity. Source: Pergamon, Elsevier Science Ltd.(11) 

Bragov and Lomunov also measured the dynamic properties of pine using the SHPB 
technique.(23)  Stress-strain diagrams are depicted in figure 20. Data are measured 
parallel and perpendicular to the grain. In addition, two curve sets are shown for each 
direction, which correspond to two strain rates (approximately 1000 per second (s-1) and 
500 s-1). The data indicate that both strength and parallel stiffness increase with strain 
rate. 
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Figure 20. Hopkinson bar data indicate that strength and stiffness increase 
with strain rate. Source: EDP Sciences.(23) 

Parallel and perpendicular strength ratios versus strain rate are needed to fit the rate-
effect model. Here, those ratios are estimated. Bragov and Lomunov report a static 
parallel compressive strength of XC = 41.4 MPa for pine.(23) This strength is used to 
calculate the parallel strength ratios from figure 20. Calculated values are ℜ(0°) = 2.3 at 
1000 per second (s) and ℜ(0°) = 1.7 at 500/s. Bragov and Lomunov did not report a 
static perpendicular compressive strength for YC.(23) Therefore, one cannot directly 
estimate the perpendicular strength ratio from figure 20. Instead, the Reid and Peng 
velocity-strength ratio relationships in equation 76 are used to estimate the impact 
velocities and perpendicular strength ratios.(11) Impact velocities of 262 m/s and 192 m/s 
are derived from the parallel relationship in equation 76 for ℜ(0°) = 2.3 and ℜ(0°) = 1.7, 
respectively. Using these velocities, perpendicular strength ratios of ℜ(0°) = 9.0 and 
ℜ(0°) = 5.3 are derived from the perpendicular relationship in equation 76. These ratios 
are reported in table 11. 

Table 11. Strength ratios versus strain rate derived 
from compressive rate-effect data. 

 
Rate (s-1) ℜ(0°) ℜ(90°) 

0 
500 

1000 

1.0 
1.7 
2.3 

1.0 
5.3 
9.0 

 

1.8.2 Shifted Surface Model Theory 

Separate rate-effect formulations are modeled for the parallel and perpendicular modes 
because the Reid and Peng data indicate that dynamic strength enhancement is more 
pronounced in the perpendicular direction than in the parallel direction.(11) The rate-
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effect formulations increase strength with increasing strain rate by expanding each yield 
surface:  

Parallel 

XT 
DYNAMIC = XT + EL ||ε& η||  Tension    (77) 

XC 
DYNAMIC = XC + EL ||ε& ηc||  Compression   (78) 

S|| 
DYNAMIC = S|| + GLT ||ε& η||  Shear     (79) 

Perpendicular             

YT 
DYNAMIC = YT + ET ⊥ε& η⊥  Tension   (80) 

YC 
DYNAMIC = YC + ET ⊥ε& ηc⊥  Compression   (81) 

S⊥ 
DYNAMIC = S⊥ + GTR ⊥ε& η⊥  Shear    (82) 

where: 

X and Y = static strengths 
X DYNAMIC and Y DYNAMIC = dynamic strengths 
Cε& η = excess stress components 
 

Excess stress components depend on the value of the fluidity parameter, η; the 
stiffness, C; and the effective strain rate, ε& . When rate effects are requested via the flag 
IRATE = 1, dynamic strengths are used in place of the static strengths in the yield 
surface formulations (in equations 13 and 14, or in equations 44 and 45). 

Four effective fluidity parameters are used (η||, ηc||, η⊥, and ηc⊥). Two parameters are 
needed for the parallel modes―one for the tensile and shear strengths, and a second 
for the compressive strength. Two parameters are also needed for the perpendicular 
modes. 

Each effective fluidity parameter is formulated from two input parameters:  
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The two-parameter formulation allows the user to model a nonlinear variation in 
dynamic strength with strain rate.(24) Setting n|| = 0 or n^ = 0 allows the user to model a 
linear variation in dynamic strength with strain rate. The total number of input 
parameters is six. Three parameters are input for the parallel modes (η||, ηc||, and n||) 
and three parameters are input for the perpendicular modes (η||, ηc||, and n^). 

Single-element simulations performed with and without rate effects (500/s) are shown in 
figure 21 for room-temperature clear wood at 12-percent moisture content. The 
dynamic-to-static strength ratio ℜ(0°) = 1.7, previously listed in table 11, was used to set 
the rate-effect parameters for the compressive simulation. These parameters are given 
in table 12. The plots in figure 21 indicate that different dynamic-to-static strength ratios 
naturally occur for the tension simulations than for the compressive simulations, even 
though η|| = ηc||. This is because the tensile and compressive simulations have the same 
excess stress components, but different static strengths. 



 

 53

Y
D

M
 18-JU

N
-99 F

H
W

A

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

Tensile Strain Parallel to Grain (%)

T
en

si
le

 S
tr

es
s 

P
ar

al
le

l t
o 

G
ra

in
 (

M
P

a)
Without Rate Effects
With Rate Effects

 

Y
D

M
 18-JU

N
-99 F

H
W

A

0.0 0.5 1.0 1.5
0

10

20

30

40

50

60

70

80

90

100

Compressive Strain Parallel to Grain (%)

C
om

pr
es

si
ve

 S
tr

es
s 

P
ar

al
le

l t
o 

G
ra

in
 (

M
P

a)

Without Rate Effects
With Rate Effects

E11 ε η||
.

 

(a) Tension parallel    (b) Compression parallel 

Figure 21. These single-element simulations demonstrate the rate-effect 
behavior of the shifted surface formulation at 500/s. 

 

Table 12. Default LS-DYNA rate-effect parameters that provide the dynamic-to-
static compressive strength ratios listed in table 11 (based on units of 

milliseconds for time) for pine at 12-percent moisture content.
Parallel Perpendicular  

Wood η|| ηc|| n|| η^ ηc^ n^ 

Pine 
Fir 

0.0045 
0.0045 

0.0045 
0.0045 

0.107 
0.107 

0.0962 
0.0962 

0.0962 
0.0962 

0.104 
0.104 

 

1.8.3 Viscoplastic Model Theory 

Viscoplastic algorithms allow the stress state to exceed the yield surface. The excess 
stress depends on the value of the fluidity parameter, η; the stiffness; and the strain 
rate. The viscoplastic (dynamic) stresses attained in uniaxial simulations are 
approximately those given in equations 77 through 82. 

Single- and two-parameter viscoplastic formulations are available. The single-parameter 
formulation was developed by Duvaut and Lions and models a linear variation in 
strength ratio with strain rate.(25) This is accomplished by specifying a constant value for 
each fluidity parameter (independent of strain rate). However, a linear variation is not 
necessarily appropriate for wood, as demonstrated in figure 19. A two-parameter 
formulation was recently suggested by Murray to model a nonlinear variation in strength 
ratio with strain rate.(24) The two-parameter formulation was previously given in 
equations 83 through 86. The viscoplastic formulation uses the same input parameters 
as the shifted surface formulation. 

E11 ε&  η|| 

A 
B 

B
A

A 
B 

B 
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The behavior of the viscoplastic model is shown in figure 22 for η = 0.0000094 s and 
four values of n. Here, the strength enhancement ratio (dynamic-to-static) has been 
plotted as a function of the strain rate. The smaller the value of n, the greater the 
strength enhancement at a given strain rate. The behavior of the two-parameter 
formulation reduces to that of the single-parameter formulation for n = 0. Thus, the 
Duvaut-Lions single-parameter model is a subset of the two-parameter model. 

 
Figure 22. Two-parameter viscoplastic model is flexible in fitting data. 

The two-parameter viscoplastic update scheme is implemented as follows:  
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  SolutionInviscidijij σση ~0 =→
 

(90)
 

  SolutionElasticijij
*σση =∞→

 
(91)

 
where: 
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Δt = time step 
ijσ  and ijσ~  = viscid (dynamic) and inviscid (static) stress tensors, respectively 

*
ijσ  = trial elastic stress 

 
At each time step, ijσ~  and *

ijσ  are calculated and saved by the plasticity algorithm. 
Then, equations 87 through 91 are applied to update the viscous solution. The inviscid 
and instantaneous elastic solutions are obtained as limiting cases of the 
implementation. This algorithm is easy to implement because the plasticity algorithm is 
not modified. The viscoplastic formulation is separate from and follows the plasticity 
algorithm.  

Separate formulations are implemented for the parallel (σ11, σ12, and σ13) and 
perpendicular modes (σ22, σ33, and σ23), because the Reid and Peng test data suggest 
that the rate effects depend on grain orientation.(11) The parallel stress components are 
updated with the parallel fluidity parameters, while the perpendicular stress components 
are updated with the perpendicular fluidity parameters. At this time, viscoplastic 
implementation requires only four parameters as input. These are η|| = ηc|| and n|| for the 
parallel modes, and η^ = ηc^ and n^ for the perpendicular modes. Therefore, one cannot 
specify separate dynamic overstresses for the tensile and compressive modes. 
Enhancement from four to six parameters could be conducted at a later date.  

Single-element simulations performed with and without viscoplastic rate effects (500/s) 
are shown in figure 23 for room-temperature clear wood pine at 12-percent moisture 
content, using the input parameters specified in table 12.5 The primary difference 
between the viscoplastic simulations and the shifted surface simulations (figure 21) is 
that the viscoplastic tensile simulation is nonlinear to peak, whereas the shifted surface 
simulation is linear. This is because plastic strains are being calculated with the 
viscoplastic formulation, not the shifted surface formulation. The user has no control 
over the linearity or nonlinearity with either formulation. 

Also note that the compressive simulations calculated with viscoplasticity attain the 
same dynamic peaks as those calculated with the shifted surface formulation. Different 
hardening parameters were used in each simulation, so the hardening is not identical. 
On the other hand, the tensile simulations calculated with the viscoplastic formulation 
attain lower peak strengths than those calculated with the shifted surface formulation. 
This is because damage accumulates in tension (not compression) and is applied to the 
stresses at the same time as viscoplasticity. Damage does not accumulate in tension 
during application of the shifted surface formulation.  

                                                 
5 Default hardening and softening parameters were not finalized at the time that these plots were made, 
so these figures cannot be reproduced using the current default material property values. 
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1.8.4 Default Rate-Effect Parameters 

Default rate-effect parameters for the shifted surface formulation were previously given 
in table 12. They provide the strength enhancement ratios listed in table 11. No rate-
effect data are available for Douglas fir, so the model uses the same default parameters 
as southern yellow pine. The viscoplastic algorithm uses four of the six shifted surface 
parameters (the compressive fluidity parameters are ignored). 

    

(a) Tension parallel     (b) Compression parallel 
 

Figure 23. These single-element simulations demonstrate the rate-effect 
behavior of the viscoplastic formulation at 500/s. 

1.9  MODEL INPUT 

The previous eight subsections reviewed the behavior and properties of wood and the 
theory of the model. Here, we examine the effects of moisture content, temperature, 
and grade on model input parameters. Two methods are available for wood model 
input. One method is to provide the following input parameters: 

• Five moduli for transversely isotropic constitutive equations. 
• Six strengths for the yield criteria. 
• Four prepeak hardening parameters. 
• Eight postpeak softening parameters. 
• Six rate-effect parameters. 

 

These 29 parameters are listed in table 13 and were discussed in detail throughout this 
section (“Theoretical Manual”). Any consistent system of units may be used.  

A second method is to request default material properties. Default material property 
requests are listed in table 14. This method is convenient because it allows the user to 
bypass the manual input of the material parameters.  
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Default material properties are provided for southern yellow pine and Douglas fir as a 
function of moisture content, temperature, grade, and units. A discussion of the effects 
of moisture, temperature, and grade is given in the following three subsections. Four 
consistent sets of units are available. Most of the default material properties are 
obtained from clear wood samples tested by FPL.(14) 

In addition to the choice between user-supplied and default input parameters, the user 
may also specify control parameters. Control parameters include material identification, 
density, options to plot damage, increasing the maximum number of iterations 
performed by the plasticity algorithm, turning on/off the rate effects, overriding perfect 
plasticity, and controlling perpendicular erosion. 

Table 13. User-supplied parameters for wood material model. 

Moduli Parallel Normal Modulus  EL 
 Perpendicular Normal Modulus ET 
 Parallel Shear Modulus GLT 
 Perpendicular Shear Modulus GTR 
 Parallel Major Poisson’s Ratio νLT 
Strengths Parallel Tensile Strength XT 
 Parallel Compressive Strength XC 
 Parallel Shear Strength  S|| 
 Perpendicular Compressive Strength YC 
 Perpendicular Tensile Strength YT 
 Perpendicular Shear Strength S⊥ 
Hardening Parallel Hardening Initiation N|| 
 Parallel Hardening Rate c|| 
 Perpendicular Hardening Initiation N⊥ 
 Perpendicular Hardening Rate c⊥ 
Softening Parallel Mode I Fracture Energy Gf I ||  
 Parallel Mode II Fracture Energy Gf II ||  
 Parallel Softening  B 
 Parallel Maximum Damage dmax|| 
 Perpendicular Mode I Fracture 

Energy 
Gf I ⊥ 

 Perpendicular Mode II Fracture 
Energy 

Gf II ⊥ 

 Perpendicular Softening  D 
 Perpendicular Maximum Damage dmax⊥ 
Rate Effects Parallel Fluidity  η|| 

 Parallel Fluidity  ηC|| 
 Parallel Power n|| 
 Perpendicular Fluidity η⊥ 
 Perpendicular Fluidity ηC⊥ 
 Perpendicular Power n⊥ 
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Table 14. Default material property requests for wood material model. 

Property Choices  Input 
Wood Species Southern Yellow Pine Pine 
 Douglas Fir Fir 
Moisture Content (%) 30% (default) 

Any moisture content (MC) 
0 
0 < MC ≤ 100 

Temperature (°C) 20 °C (default) 
Any temperature (T) 

0 
-50 ≤ T ≤ 150 

Grade Grades 1, 1D, 2, or 2D QT = 0 
 DS-65 or Structural Select QT = -1 
 Clear Wood QT = -2 

Quality Factors (Q) 0.0 < QT £ 1.0 
0.0 < QC £ 1.0 

 
 
 Apply Quality Parameters  

Perpendicular (IQUAL) 
Yes IQUAL = 0 
No IQUAL = 1 

Units GPa, mm, ms, kg/mm3, kN 0 
 MPa, mm, ms, g/mm3, N 1 
 MPa, mm, s, Mg/mm3, N 2 

 lbf/inch2, inch, s, lb-s2/inch4, lbf 3 
 

1.10 MOISTURE EFFECTS 

Empirical equations are implemented that specify the clear wood moduli, strengths, and 
fracture energies as a function of moisture content. The user specifies the percent 
moisture content and the model uses the appropriate moduli, strengths, and fracture 
energies. If the user does not specify the moisture content, then a moisture content of 
30 percent is used as the default. 

1.10.1  Southern Yellow Pine 

Moisture content has a significant effect on the measured moduli, strengths, and 
fracture intensities of southern yellow pine. The effect of moisture content on the elastic 
moduli was given in table 1. The effect of moisture content on strength was given in 
table 4. The effect of moisture content on the mode I and mode II fracture intensities 
was given in table 10. Plots of clear wood measurements versus moisture content are 
reproduced in appendix B.  

The empirical equations implemented for southern yellow pine are given in table 15. 
Comparisons of the equations with measured data are given in appendix B. They were 
derived by plotting the moduli, strength, and fracture intensity data as a function of 
moisture content and then fitting quadratic curves through the data.(14) Note that the 
data are highly variable. Therefore, the equations represent average clear wood 
properties. The equations for the moduli were obtained from fits to the tensile data, 
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rather than to the compressive data. The fiber saturation point is reported as 23 percent. 
This point is the moisture content at which the cell walls are saturated with water, but no 
water exists in the cell cavities. It is generally assumed that the material properties do 
not change above this saturation point. Therefore, all material properties are held 
constant above 23 percent and set equal to those calculated by the empirical equations 
at 23 percent. The label saturated in plots indicates a moisture content of 23 percent. 

Table 15. Equations fit to moisture content data for southern yellow pine. 

P = A(MC)2 + B(MC) + C Parameter 
P A B C 

Moduli 
EL  Parallel Normal (MPa) 
ET  Perpendicular Normal (MPa) 
νLT  Parallel Poisson’s Ratio 

 
 -8.50 
 -2.06 
 -0.00013 

 
-45.3 
 17.2 
-0.00354 

 
16774 

 944 
0.307 

Fracture Intensities 
KIc  (kN/m3/2) 
KIlc  (kN/m3/2) 

 
-0.79 
-4.80 

 
10.9 

104 

 
447 

1505 
Strengths 

XT  Tension Parallel (MPa) 
YT  Tension Perpendicular (MPa) 
XC  Compression Parallel (MPa) 
YC  Compression Perpendicular (MPa) 
S||  Shear Parallel (MPa) 

 
-0.448 
-0.016 
0.011 
0.000 

-0.0226 

 
 10.51 

0.33 
 -3.25 
-0.555 
 0.056 

 
80.57 
 2.82 
90.17 
16.93 
19.86 

 

No data are available for parameters not listed in table 15, such as shear moduli and 
the strength in the isotropic plane. Therefore, the following assumptions are made: 

• The shear modulus parallel to the grain (G12) varies linearly with the normal 
modulus parallel to the grain (E11), as follows:  
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(92)
 

 
This linear relationship was obtained from the predicted elastic parameters 
for softwoods found in table 3.3 of Bodig and Jayne for softwoods.(15) 
 

• Poisson’s ratio perpendicular to the grain (ν23) is obtained from a fit to the 
Douglas fir data (see section 1.10.2). 

 
• The shear modulus perpendicular to the grain is obtained from the isotropic 

relationship:  
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• The shear strength perpendicular to the grain (S23) is 140 percent of the 

shear strength parallel to the grain (S12). This approximate percentage was 
obtained from measurements for four wood species reported by Goodman 
and Bodig.(7) Conversely, the USDA Wood Handbook reports that the rolling 
shear strength is only 18 to 28 percent of the parallel shear strength and is 
thus quite small.(18) Nevertheless, the larger value of 140 percent is 
implemented. The effect of large versus small perpendicular shear strength 
on the shape of the yield surface is evaluated in appendix D. 

1.10.2  Douglas Fir 

There is a lack of material property data for Douglas fir. The limited data documented by 
FPL were used, and the missing information was supplemented with handbook values 
or pine data. The effect of moisture content versus elastic moduli was previously given 
in section 1. Strength measurements from various sources were given in table 5. 
Updating of the default properties is suggested as more data become available in the 
future. 

The empirical equations implemented for the Douglas fir moduli are listed in table 16. 
They were derived by fitting quadratic curves through the data from table 2. The shear 
modulus parallel to the grain (G12) varies linearly with the normal modulus parallel to the 
grain (E11), according to equation 92. 

Table 16. Equations fit to stiffness moisture content data for Douglas fir. 

P = A(MC)2 + B(MC) + C Parameter 
P A B C 

Moduli 
EL  Parallel Normal (MPa) 
ET  Perpendicular Normal (MPa) 
νLT  Parallel Poisson’s Ratio 
νTR  Perpendicular Poisson’s Ratio 

 
-14.3 
  -5.88 
  -0.0001154 
   0.0001649 

 
297.4 
108.5 
   -0.001808 
   -0.002297 

 
14959 
    508 
        0.375 
        0.376 

 

The equations implemented for the Douglas fir strengths are based on the equations (P) 
implemented for southern yellow pine and listed in table 16:  

                                                Pine
firfir P

PStrengthStrength MC
MC ⎟⎟
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Douglas fir strengths vary with moisture content in the same manner as southern yellow 
pine strengths. The term in brackets on the right of equation 94 is a scale factor with a 
value of 1.0 at 20-percent moisture content (assumed fiber saturation point). The 
strengths implemented for Douglas fir at 20-percent moisture content are the green 
material strengths listed in the USDA Wood Handbook.(18) They were previously listed in 
table 6. The shear strength perpendicular to the grain (S23) is 140 percent of the shear 
strength parallel to the grain (S12). 

No fracture intensity data are available for Douglas fir, so the same fracture intensity 
equations and values are used as implemented for southern yellow pine. In addition, all 
Douglas fir material properties are held constant above 20-percent moisture content. 
This is because our quadratic fit to the perpendicular modulus drops to zero stiffness 
just above 22 percent. 

1.11 TEMPERATURE EFFECTS 

Typically, the moduli and strength of wood decrease as temperature increases. In 
addition, temperature interacts with moisture to influence the mechanical properties, as 
shown in figure 24.(16) This figure indicates that the temperature effects are more 
pronounced at high moisture content than at low moisture content. If the temperature 
change is not sustained, then the effect is reversible―the moduli and strengths will 
return to their original value at their original temperature. If the temperature change is 
sustained, then the effect is permanent, at least at elevated temperatures. This is 
because chemical changes occur in wood with prolonged exposure to elevated 
temperatures that degrade the wood properties and produce large reductions in 
strength. Repeated exposure to elevated temperatures also has a cumulative effect. 

Guardrail posts may be exposed to extreme temperatures for prolonged periods of time. 
Guardrail posts in warm regions that are exposed to high temperatures for long periods 
of time will have different properties than those in cold regions of the country. In 
addition, bogie tests on guardrail posts indicate that energy absorption goes down when 
posts freeze. This was previously demonstrated in figure 4. Although these observations 
on guardrail posts suggest that mechanical properties are affected by temperature, no 
clear wood data are available for southern yellow pine or Douglas fir that document the 
effect. Thus, the data from Bodig and Jayne and the USDA Wood Handbook are 
used.(16,18) 
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(a) Data reproduced from Bodig and Jayne  (b) Quadratic fits to data 
    Source: Krieger Publishing Company(16) 

Figure 24. Effect of temperature and moisture interaction 
on longitudinal modulus. 

Here, three methods are suggested for modeling temperature effects. One method 
takes regional variations into account through the selection of a predefined temperature 
exposure parameter tabulated by region. This method would vary the moduli, strengths, 
and fracture energies as a function of the temperature exposure parameter. However, 
this approach is not practical at this time because neither the regional data nor the clear 
wood data are available to develop such a detailed model.  

A second method specifies temperature effects by range. For example, three broad 
ranges could be modeled:  

• Low temperatures (below freezing). 
• Intermediate temperatures. 
• High temperatures. 
 

The user would specify a flag that indicates one of the three ranges. This method is 
simple to implement and easy to use, but does not give the user many choices. 

A third method specifies the temperature directly. With this method, the room-
temperature (20 °C) properties are scaled up or down according to the temperature 
specified. If no temperature is specified, the temperature defaults to room temperature 
(20 °C) and no scale factor is applied. This method is currently used for the default 
material properties. 
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The following factor (FM) is implemented to scale the clear wood moduli as a function of 
input temperature (T):  

  1)20()20()( 2 +−+−= TbTaTFM  
(95)
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(96)
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(97)
 
where: 

Coefficient a1 (°C-2)  =  −0.0000000377625 
Coefficient a2 (°C-2)  =  −0.000001416 
Coefficient a3 (°C-2)  =  −0.0000003125 
Coefficient b1 (°C-1)  =  −0.000004817 
Coefficeint b2 (°C-1)  =  −0.000109895 
Coefficient b3 (°C-1)  =  −0.000875 
 

All six coefficients (a1, a2, a3, b1, b2, and b3) are obtained from fits to the data previously 
shown in figure 24(a) for six wood species. Equations 95 through 97 are plotted in figure 
24(b). The data indicate that the stiffness of the wood increases when frozen and 
decreases when heated. 

The following factor (FS) is implemented to scale the clear wood strengths as a function 
of input temperature:  

  [ ] 11)(2)( +−= TFTF MS  
(98)

Equation 98 is based on the data shown in figure 25. Figure 25 indicates that 
temperature has a stronger effect on strength than it has on stiffness. For temperatures 
below 20 °C, the increase in strength is twice that modeled for the increase in moduli. 
For temperatures above 20 °C, the decrease in strength is twice that modeled for the 
decrease in moduli. These plots are reproduced from the USDA Wood Handbook and 
are a composite of the results obtained from several studies.(18) 
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(a) Strength      (b) Stiffness 

Figure 25. Temperature effects are more pronounced for the strength 
parallel to the grain than for the modulus parallel to the grain. 

Source: Forest Products Laboratory.(18) 

The wood data shown in figure 25 may seem inconsistent with the bogie test data 
previously shown in figure 4. The bogie data indicate that it takes less impact force to 
break a frozen wood post than a room-temperature post. This may be because frozen 
posts are more brittle than room-temperature posts, so temperature may affect fracture 
energy.  

The author is not aware of any fracture intensity or energy data for frozen pine or fir that 
demonstrate the effect of temperature, either parallel or perpendicular to the grain. 
Therefore, the perpendicular-to-the-grain energy is modeled independent of 
temperature (using the FPL quadratic equations). However, wood is expected to 
become more brittle as temperature decreases. Therefore, parallel to the grain, a 
reduction in fracture energy is modeled upon freezing and an increase in fracture 
energy is modeled upon heating. 

The variation in fracture energy with temperature is based on correlations of dynamic 
bogie impact with frozen and room-temperature grade 1 posts. Good frozen grade 1 
correlations are obtained with a parallel-to-perpendicular energy ratio of 5, which is very 
brittle behavior. To accommodate variation with temperature, the default parallel-to-the-
grain energies are modeled with a linear variation with temperature (T) between frozen 
and room-temperature values: 

  RoomTemp
IfIf GTG |||| )2223.22/1.0( +=

 
(99)

RoomTemp
IfIf GTG ⊥⊥ += )2223.22/1.0(

 
(100)

 

Here, T is the temperature in degrees Celsius (°C) between 0 and 20 °C, and room 
temperature is 20 °C. For temperatures lower than 0 °C, the frozen fracture energies 
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are the default values. For temperatures higher than 20 °C, the room-temperature 
fracture energies are the default values. 

1.12 VARIABILITY BY GRADE 

Visual grading includes an assessment of wood defects. When analyzing structures 
such as guardrail posts, the exact position of the defects will not be known, except in 
highly controlled laboratory tests. Therefore, a practical approach for addressing defects 
is to modify the material properties globally as a function of visual grade. This approach 
requires the implementation of the grade as an input parameter. 

Four input options are available for modeling strength and stiffness reductions by grade. 
The four options are listed in table 17: 

Table 17. Input options for modeling strength reductions by grade. 

User Input Grade Reduction Factors 
QT    QC    Wood 

QT = 0   QC Ignored 1, 1D, 2, or 2D 0.47  0.63   Pine 
0.40  0.70   Fir  

QT = −1  QC Ignored DS-65 or SEL STR 0.80  0.93   Pine & Fir 

QT = −2  QC Ignored Clear Wood 1.00  1.00   Pine & Fir 

0.0 < QT £ 1.0 
0.0 < QC £ 1.0 User-Specified QT    QC    Pine & Fir 

 

The user may request clear, high-grade (DS-65 or Select Structural), or low-grade 
(grades 1, 1D, 2, or 2D) wood. This is because significant differences were noted 
between DS-65 posts and posts of all other grades (1, 1D, 2, and 2D) tested. The 
DS-65 posts are significantly stronger than all other posts. In addition, there is no 
statistically significant difference in response among the other posts, although the dense 
posts (grades 1D and 2D) tend to absorb more energy than the low-density (grades 1 
and 2) posts. Therefore, the posts can effectively be divided into two grades. 

Our approach is to implement global strength-reduction factors as a function of grade. 
Two factors must be applied. One factor, QT, reduces the tensile and shear strengths of 
clear wood; the other factor, QC, reduces the compressive strengths. The factors are 
simultaneously applied to the parallel and perpendicular strengths. In addition to 
applying the predefined quality factors by grade, the user may directly specify the 
tensile and compressive reduction factors between 0 and 1. 

The Standard Grading Rules Handbook for southern pine lumber indicates that the 
perpendicular-to-the-grain compressive strength of lumber does not always vary with 
grade (perpendicular tensile strengths are not reported).(26) Therefore, an input flag 
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(IFAIL) is available to allow the user to apply the strength-reduction factors parallel to 
the grain, but not perpendicular to the grain. 

Although strength-reduction factors are a global approach for modeling strength and 
stiffness reductions caused by defects, the user may want to model local defects in 
detail. This can be done by the appropriate selection of mesh, local wood properties, 
and local grain orientation. The modeling of defects in an explicit manner is expected to 
be time-consuming to set up and may be computationally intensive to run.  
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2. USER’S MANUAL 
 
This section is intended to be a brief user’s manual for those users who want to run the 
model with a cursory, rather than indepth, understanding of the underlying theory and 
equations. This section includes a description of the LS-DYNA wood model input, a brief 
parameter description, and methods of fitting the parameters to data. This section 
concludes with a brief description of the wood model theory and an example output file. 

2.1  LS-DYNA INPUT 

*MAT_WOOD_{OPTION} 

This is material type 143. This is a transversely isotropic material and is available for 
solid elements in LS-DYNA. The user has the option of inputting his or her own material 
properties (<BLANK> option) or requesting default material properties for southern 
yellow pine (PINE) or Douglas fir (FIR). 

Options include: 

PINE 

FIR 

<BLANK> 
 

such that the keyword cards appear: 

*MAT_WOOD_PINE 

*MAT_WOOD_FIR 

*MAT_WOOD 

Define the following card for all options: 

Card Format 

 
Card 1 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
MID 

 
RO 

 
NPLOT 

 
ITERS 

 
IRATE 

 
GHARD 

 
IFAIL 

 

 
Type 

 
I 

 
F 

 
I 

 
I 

 
I 

 
F 

 
I 
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Define the following cards for the PINE and FIR options: 

 
Card 2 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
MC 

 
TEMP 

 
QT 

 
QC 

 
UNITS

 
IQUAL

  

 
Type 

 
F 

 
F 

 
F 

 
F 

 
I 

 
I 

  

Define the following cards for the <BLANK> option (do not define for PINE or FIR): 

 
Card 3 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
EL 

 
ET 

 
GLT 

 
GTR 

 
νLT 

   

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

   

 
 
Card 4 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
XT 

 
XC 

 
YT 

 
YC 

 
S|| 

 
S⊥ 

  

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

  

 
 
Card 5 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
Gf I ⊥ 

 
Gf II || 

 
B 

 
dmax|| 

 
Gf I ⊥ 

 
Gf II ⊥ 

 
D 

 
dmax⊥ 

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

 
 
Card 6 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
η|| 

 
ηC|| 

 
n|| 

 
η⊥ 

 
ηC⊥ 

 
n⊥ 

  

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

  

 
 
Card 7 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
N|| 

 
c|| 

 
N⊥ 

 
c⊥ 

    

 
Type 

 
F 

 
F 

 
F 

 
F 
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Define for all options: 

 
Card 8 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
AOPT 

       

 
Type 

 
I 

       

 
 
Card 9 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
XP 

 
YP 

 
ZP 

 
A1 

 
A2 

 
A3 

  

 
Type 

 
F 

 
F 

 
F 

 
F 

 
F 

 
F 

  

 
 
Card 10 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
Variable 

 
D1 

 
D2 

 
D3 

     

 
Type 

 
F 

 
F 

 
F 

     

 

Variable Description 

 MID  Material identification (a unique number has to be chosen) 

 RO  Mass density 

 NPLOT  Plotting options: 
EQ. 1: Maximum of parallel and perpendicular damage (default) 
EQ. 2: Perpendicular damage 

 
 ITERS  Number of plasticity algorithm iterations (default is one iteration; 

values greater than 1 are not recommended) 
 

 IRATE  Rate-effect options: 
     EQ. 0: Rate-effect model turned off (default) 
     EQ. 1: Rate-effect model turned on 
 
 GHARD Perfect plasticity override (values greater than or equal to zero are 

allowed). Positive values model late-time hardening in compression (an 
increase in strength with increasing strain). A zero value models perfect 
plasticity (no increase in strength with increasing strain). The default is 
zero.  
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 IFAIL  Erosion perpendicular to the grain: 
  EQ. 0: No (default) 
  EQ. 1: Yes (not recommended except for debugging) 
 
Define for PINE and FIR options: 

Variable Description 

 MC Percent moisture content (if left blank, moisture content defaults to 
saturated at 30 percent) 

 TEMP Temperature in °C (if left blank, temperature defaults to room temperature 
at 20 °C) 

 QT  Quality factor options (these quality factors reduce the clear wood 
tension/shear and compression strengths as a function of grade): 

EQ. 0: Grades 1, 1D, 2, 2D 
Predefined strength-reduction factors are:  
 
Pine: QT = 0.47 in tension/shear 

QC = 0.63 in compression 
 
Fir: QT = 0.40 in tension/shear 

QC = 0.70 in compression 
 

EQ. -1:DS-65 or SEL STR 
Predefined strength-reduction factors are: 

QT = 0.80 in tension/shear 
QC = 0.93 in compression 
 

  EQ. -2:Clear wood 

QT = 1.0 in tension/shear 
QC = 1.0 in compression 

 
GT. 0: User-defined quality factor in tension (values greater than 0 and 

less than or equal to 1 are expected; values greater than 1 are 
allowed, but may not be realistic. 
 

 QC  User-defined quality factor in compression (This input value is used if 
QT > 0. Values greater than 0 and less than or equal to 1 are expected. 
Values greater than 1 are allowed, but may not be realistic. If left blank 
when QT > 0, a default value of QC = QT is used.) 
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 UNITS Unit options: 

EQ. 0: gigapascals (GPa), mm, milliseconds (ms), kilograms per cubic 
 millimeter (kg/mm3), kilonewtons (kN) 
EQ. 1: MPa, ms, grams per cubic millimeter (g/mm3), newtons (N) 
EQ. 2: MPa, mm, s, megagrams per cubic millimeter (Mg/mm3), N 
EQ. 3: lbf/inch2, inch, s, pound second squared per inch to the fourth 

power (lb-s2/inch4), pounds force (lbf) 
 

 IQUAL Apply quality factors perpendicular to the grain: 
  EQ. 0: Yes (default) 
  EQ. 1:  No 
 
Remarks: Material property data are for clear wood (small samples without defects 
such as knots), whereas real structures are composed of graded wood. Clear wood is 
stronger than graded wood. Quality factors (strength-reduction factors) are applied to 
the clear wood strengths to account for reductions in strength as a function of grade. 
One quality factor (QT) is applied to the tensile and shear strengths. A second quality 
factor (QC) is applied to the compressive strengths. As an option, predefined quality 
factors are provided based on correlations between LS-DYNA calculations and test data 
for pine and fir posts impacted by bogie vehicles. By default, quality factors are applied 
to the parallel strengths and to the perpendicular strengths. An option is available 
(IQUAL) to eliminate application perpendicular to the grain. 

Define for <BLANK> option only: 

Variable Description 

 EL  Parallel normal modulus 
 ET  Perpendicular normal modulus 
 GLT   Parallel shear modulus (GLR = GLT) 
 GTR  Perpendicular shear modulus 
 νLT    Parallel major Poisson’s ratio 
 XT  Parallel tensile strength 
 XC   Parallel compressive strength 
 YT   Perpendicular tensile strength 
 YC  Perpendicular compressive strength 
 S||  Parallel shear strength 
 S⊥  Perpendicular shear strength 
 Gf I ||   Parallel fracture energy in tension 
 Gf II ||   Parallel fracture energy in shear 
 B  Parallel softening parameter 
 dmax|| Parallel maximum damage 
 Gf I ⊥   Perpendicular fracture energy in tension 
 Gf II ⊥  Perpendicular fracture energy in shear 
 D  Perpendicular softening parameter 
 dmax⊥ Perpendicular maximum damage 
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 η||  Parallel fluidity parameter in tension/shear 
 ηc||  Parallel fluidity parameter in compression 
 n||  Parallel power 
 η⊥  Perpendicular fluidity parameter in tension/shear 
 ηc⊥  Perpendicular fluidity parameter in compression 
 n⊥  Perpendicular power 
 N||  Parallel hardening initiation 
 c||  Parallel hardening rate 
 N⊥  Perpendicular hardening initiation 
 c⊥  Perpendicular hardening rate 
 
Define for all options: 

AOPT material axes option (see MAT_OPTIONTROPIC_ELASTIC for a more complete 
description): 

EQ. 0: Locally orthotropic with material axes determined by element 
EQ. 1: Locally orthotropic with material axes determined by a point in 
 space and the global location of the element center; this is the 

a-direction 
EQ. 2: Globally orthotropic with material axes determined by vectors 

defined below, as with *DEFINE_COORDINATE_VECTOR 
 

XP, YP, ZP Coordinates of point p for AOPT = 1 

A1, A2, A3 Coordinates of vector a for AOPT = 2 

D1, D2, D3 Components of vector d for AOPT = 2 

Remarks: One common option is AOPT = 2. The user defines vectors a and d. 
Typically, a is the parallel-to-the-grain direction and d is one of the perpendicular-to-the-
grain directions. Then, a x d = c and c x a = b, where a, b, and c are the principal 
material axes. 

2.2 DESCRIPTION OF PROPERTIES 

Wood is generally considered an orthotropic material with different properties in the 
longitudinal, tangential, and radial directions. This is a transversely isotropic model 
(simplification of orthotropic) in which the properties in the tangential and radial 
directions are modeled the same. For simplicity, the longitudinal direction is referred to 
as the parallel-to-the-grain direction and the tangential and/or radial directions as the 
perpendicular-to-the-grain direction. This is an elastoplastic damage model with rate 
effects. Separate elliptical yield surfaces and scalar damage formulations are modeled 
for the parallel and perpendicular modes. The damage formulations admit progressive 
degradation of the tensile and shear stress components while retaining perfect plasticity 
in compression. Hardening formulations are available, based on a translating yield 
surface, to model nonlinearity in compression. Evaluation of the model through 
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correlations with wood post data (static and dynamic) is given in Murray and Reid.(2) 
Clear wood data for pine, available as default material properties, are given in Green 
and Kretschmann.(14) 

1. EL is the normal modulus of the undamaged wood parallel to the grain. The subscript 
L refers to the longitudinal direction of the wood. Typical units for moduli are GPa, 
MPa, or lbf/inch2. 
 

2. ET is the normal modulus of the undamaged wood perpendicular to the grain. The 
subscript T refers to the tangential direction, which, for a transversely isotropic 
material, is modeled the same as the ‘R’ radial direction. 
  

3. GLT is the shear modulus of the undamaged wood parallel to the grain. 
 

4. GTR is the shear modulus of the undamaged wood perpendicular to the grain. 
 

5. νLT is the major Poisson’s ratio parallel to the grain. A transversely isotropic material 
has three ratios, only one of which is independent. The minor Poisson’s ratio parallel 
to the grain, νTL, is calculated internally within the model as νTL = νLT (ET / EL). The 
Poisson’s ratio perpendicular to the grain (in the isotropic plane) is calculated 
internally as νTR = νRT = (ET – 2GTR) / 2GTR. 
 

6. Inputs XT, XC, and S|| are the strengths, parallel to the grain, in uniaxial tensile stress, 
uniaxial compressive stress, and pure shear stress, respectively. Together, these 
three strengths form an irregular elliptical surface for modeling failure or yielding 
parallel to the grain. These three strengths form the ultimate yield surface. The 
compressive strength is also scaled back to form the initial yield surface when 
prepeak hardening is requested. Yielding is initiated once the stress state exceeds 
the yield surface. In this case, a plasticity algorithm with associated flow returns the 
stress state to the yield surface (normal return). Typical units for strength are GPa, 
MPa, or lbf/inch2. 
 

7. Inputs YT, YC, and S⊥ are the strengths, perpendicular to the grain, in uniaxial tensile 
stress, uniaxial compressive stress, and pure shear stress, respectively. The yield 
surface for the perpendicular modes is separate from the yield surface for the 
parallel modes. 
 

8. Gf I || and Gf II || are the fracture energies in uniaxial tensile stress and pure shear 
stress parallel to the grain. The fracture energy is the area under the stress-
displacement curve as it softens from peak stress to zero stress. The softening 
model incorporates fracture energy and element size (passed to the wood model 
internally) in order to regulate mesh-size sensitivity. The result is a softening 
response that is independent of element size. This is accomplished by keeping the 
fracture energy constant from element to element, regardless of size. Typical units 
are GPa-mm, MPa-cm, or lbf/inch2-inch. 
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9. B is the parallel-to-the-grain softening parameter. It sets the shape of the softening 
curve plotted as stress-strain or stress-displacement. B is unitless. A typical value is 
B = 30. 
 

10. dmax|| is the maximum damage that can accumulate parallel to the grain. Damage 
accumulation is based on an undamaged elastic strain energy norm formulated from 
the parallel strains. No damage threshold is required as input. The threshold is 
internally calculated and stored once the parallel yield criterion is satisfied. Thus, 
damage initiates with plastic yielding and accumulates if the energy norm of the 
current time step exceeds the energy norm of the previous time step. dmax|| is 
unitless and ranges from 0 (no damage) to 1 (100-percent damaged). A value of 
dmax|| = 0.9999 is typical.  
 

11. Gf I ⊥ and Gf II ⊥ are the fracture energies in tension and shear perpendicular to the 
grain. Typical units are GPa-mm, MPa-cm, or lbf/inch2-inch.  
 

12. D is the perpendicular-to-the-grain softening parameter. It sets the shape of the 
softening curve plotted as stress-strain or stress-displacement. D is unitless. A 
typical value is D = 30. 
 

13. dmax⊥ is the maximum damage that accumulates perpendicular to the grain. 
Damage accumulation is based on an undamaged elastic strain energy norm 
formulated from the perpendicular strains. Perpendicular damage accumulates 
separately from parallel damage. dmax⊥ is unitless. A value of dmax⊥ = 0.99 is 
typical. 
 

14. Inputs η||, ηc||, and n|| are rate-effect parameters that increase the parallel strengths 
of wood as a function of strain rate via shifted surface formulations. Dynamic 
strength is equal to the static strength plus an overstress. The overstress is equal to 
EL ε

)−(
& ||1 n η|| in tension, GLT ε

)−(
& ||1 n η|| in shear, and EL ε

)−(
& ||1 n ηc|| in compression, 

where ε&  is the effective strain rate. The products ε
)−(

& ||1 n η|| and ε
)−(

& ||1 n ηc|| are 
unitless. Values for n|| range from 0 to less than 1, with a typical value of n|| = 0.1. 
 

15. Inputs η⊥, ηc⊥, and n⊥ are rate-effect parameters that increase the perpendicular 
strengths of wood as a function of strain rate. Strength increases for the 
perpendicular stresses are modeled separately from strength increases for the 
parallel stresses. The overstress is equal to ET ε

)−( ⊥&
n1 η⊥ in tension, GTR ε

)−( ⊥&
n1 η⊥ 

in shear, and ET ε
)−( ⊥&

n1 ηc⊥ in compression.  
 

16. Inputs N|| and c|| are the hardening parameters for modeling prepeak nonlinearity in 
compression parallel to the grain. The hardening formulation translates an initial 
yield surface until it coincides with the ultimate yield surface that is formulated from 
the parallel strengths. The parameter N|| determines the location of the initial yield 
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surface. The parameter c|| determines the rate of translation. Both parameters are 
unitless. Typical values are N|| = 0.5 with c|| = 1000. 

 
17. Inputs N⊥ and c⊥ are the hardening parameters for modeling prepeak nonlinearity in 

compression perpendicular to the grain. Perpendicular hardening is formulated 
separately from parallel hardening.  

 
18. Input GHARD is an additional hardening parameter that allows each translating yield 

surface to surpass the ultimate yield surface. A positive value will produce continued 
hardening in excess of the yield strengths. A zero value will produce perfect 
plasticity in compression. A small positive value (e.g., GHARD = 0.02) is 
recommended if computational difficulties are suspected because of perfect 
plasticity. 

2.3 FITTING THE MODEL TO THE DATA  

1. Stiffnesses (EL, ET, GLT, and GTR) and the major Poisson’s ratio (νLT) are directly 
measured from the elastic portion of the stress-strain curves or are selected from 
data tabulated in the literature. If the parallel stiffness EL is known, then one can 
estimate the other elastic stiffnesses from tables documented in the literature for 
softwoods (e.g., pine).(16) Typically, ET is 5 to 15 percent of EL. Care must be taken 
to measure or select the correct Poisson’s ratio. The major ratio, νLT, is typically 
greater than 0.1 and is about 10 times larger than the minor ratio, νTL.  

2. Strengths (XT, XC, YT, YC, S||, and S⊥) are obtained from measurements of peak/yield 
stress from stress histories or are selected from data tabulated in the literature. 
Typically, the parallel tensile strength of pine is 30 to 50 times greater than the 
perpendicular tensile strength. The parallel compressive strength is four to five times 
greater than the perpendicular compressive strength. The parallel shear strength is 
about 10 to 15 percent of the parallel tensile strength. Data for perpendicular shear 
strength vary. One source suggests that the perpendicular shear strength, S⊥, is 140 
percent of the parallel shear strength, S||.(7) Another source suggests that the 
percentage is only 18 to 28 percent.(18) 

3. The prepeak hardening parameters (N||, c||, N⊥, and c⊥) are derived from the 
nonlinear portion of compressive stress-strain curves measured both parallel and 
perpendicular to the grain. Hardening is modeled separately for the parallel and 
perpendicular modes. The parameters N|| and N⊥ determine the onset of 
nonlinearity. If the user wants prepeak nonlinearity to initiate at 70 percent of the 
yield stress, then the user would input N = 0.3 (for 30 percent), which is derived from 
N = 1 – 0.7 (100 percent – 70 percent). The parameters c|| and c⊥ set the amount of 
nonlinearity and are selected through iteration: Pick a value for c, plot the results 
from a single-element simulation, and compare with the test data. Typical values of c 
are between 100 and 1000 (unitless). Gradual hardening is accomplished with 
smaller values of c. Rapid hardening is accomplished with larger values of c. If no 
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data are available, prepeak hardening can be neglected (giving a linear stress-strain 
curve to yield) by setting both values of N equal to zero.  

4. The fracture energy (Gf I ||, Gf II ||, Gf I ⊥, or Gf II ⊥) is the area under the stress-
displacement curve as it softens from peak stress to zero stress. The best approach 
is to measure fracture energy directly in both direct tension and simple shear. An 
alternative approach is to measure fracture intensity and convert it to fracture 
energy.  

5. The postpeak softening parameters (B and D) are derived from the softening portion 
of the stress-strain or stress-displacement curves and are set in conjunction with the 
fracture energies (Gf I ||, Gf II ||, Gf I ⊥, and Gf II ⊥) and the damage parameters (dmax|| 
and dmax⊥). The parameters B (for parallel modes) and D (for perpendicular modes) 
set the shape of the softening portion of the stress-strain or stress-displacement 
curves once the fracture energy is selected. Although each parameter (B or D) is 
intended to be simultaneously fit to both tension and shear data, shear data are 
rarely available. The procedure is iterative: Pick a value for D or B, plot the results 
from a single-element simulation, and compare with the test data. Typical values for 
B and D are 10 to 50 (unitless). The smaller the value, the more gradual the initial 
softening.  

6. The postpeak damage parameters (dmax|| and dmax⊥) are derived from the final 
softening portion of the stress-strain or stress-displacement curves and are set in 
conjunction with the fracture energies (Gf I ||, Gf II ||, Gf I ⊥, and Gf II ⊥) and the softening 
parameters (B and D). The parameters dmax|| (for parallel modes) and dmax⊥ (for 
perpendicular modes) set the maximum damage that can accumulate. Values 
between 0 and 1 are allowed. A value of 0 neglects softening, while a value of 1 
models complete softening to 0 stress and stiffness. A typical value for parallel 
damage is dmax|| = 0.9999. Erosion is automatically modeled when parallel damage 
exceeds 0.99. Set dmax|| > 0.99 to model erosion at high damage levels. Set 
dmax|| ≤ 0.99 to bypass erosion (not recommended because this may cause mesh 
entanglement and element inversion). A typical value for perpendicular damage is 
dmax⊥ = 0.99. Values greater than 0.99 are not recommended because elements 
have a tendency to tangle and invert with near zero stiffness, and erosion is not 
automatically modeled with perpendicular damage. Values less than 0.99 should be 
input if mesh entanglement and element inversion are a problem. 

7. The rate-effect parameters (η||, ηc||, n||, η⊥, ηc⊥, and n⊥) are obtained from fits to 
strength versus strain-rate measurements or are selected from data tabulated in the 
literature. Separate measurements must be made parallel and perpendicular to the 
grain to separately fit the parameters parallel (η||, ηc||, and n||) and perpendicular (η⊥, 
ηc⊥, and n⊥) to the grain. Separate measurements may also be made in 
tension/shear versus compression to separately fit the tensile/shear (η|| or η⊥) and 
compression (ηc|| or ηc⊥) parameters. If separate tension/shear versus compression 
measurements are not available, then the following ratios are recommended: η||/ηc|| 
= η⊥/ηc⊥ = QT / QC. Each set of parameters is obtained from dynamic strength 
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measurements at two different strain rates (because there are two parameters), as 
well as from the static strength (zero strain rate). At each of two strain rates, the 
difference between the dynamic and static strength is C ε& η, where C is the stiffness 
(EL, ET, GLT, or GTR), ε&  is the effective strain rate, and η is the effective fluidity 
parameter equal to η = η0/ε& n. Here, η0 (η|| or ηc||, or η⊥ or ηc⊥) and n (n|| or n⊥) are 
the two parameters to be fit (C and ε& are known). The two parameters are found by 
simultaneously solving two equations with two unknowns (see equation 60 in the 
Model Formulation section). Typical clear wood values are n|| = 0.107, with η|| = ηc|| = 
0.0045 for parallel rate effects, and n⊥ = 0.104, with η⊥ = ηc⊥ = 0.0962 for 
perpendicular rate effects (for time in milliseconds). Typical graded wood values are 
n|| = 0.107, with η|| = 0.0045QT and ηc|| = 0.0045QC (parallel), and n⊥ = 0.104, with η⊥ 
= 0.0962QT and ηc⊥ = 0.0962QC (perpendicular). 

2.4 MODEL FORMULATION 

Elastic Constitutive Equations 

The general constitutive relationship for an orthotropic material, written in terms of the 
principal material directions, is:(16)  
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The subscripts 1, 2, and 3 refer to the longitudinal, tangential, and radial stresses and 
strains (σ1 = σ11, σ2 = σ22, σ3 = σ33, ε1 = ε11, ε2 = ε22, and ε3 = ε33), respectively. The 
subscripts 4, 5, and 6 are in a shorthand notation that refers to the shearing stresses 
and strains (σ4 = σ12, σ5 = σ23, σ6 = σ13, ε4 = ε12, ε5 = ε23, and ε6 = ε13). As an alternative 
notation for wood, it is common to substitute L (longitudinal) for 1, R (radial) for 2, and T 
(tangential) for 3. The components of the constitutive matrix, Cij, are listed here in terms 
of the nine independent elastic constants of an orthotropic material:  
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Δ−= /)1( 32231111 ννEC  (102)

 Δ−= /)1( 13312222 ννEC  (103)

 Δ−= /)1( 21123333 ννEC  (104)

 Δ+= /)( 1123312112 EC ννν  (105)

 Δ+= /)( 1132213113 EC ννν  (106)

 Δ+= /)( 2231123223 EC ννν  (107)

1244 GC =  (108)

2355 GC =  (109)

 1366 GC =  (110)

 133221133132232112 21 ννννννννν −−−−=Δ  (111)
 

The following identity, relating the dependent (minor Poisson’s ratios ν21, ν31, and ν32) 
and independent elastic constants, is obtained from symmetry considerations of the 
constitutive matrix:  

 
3,2,1, == jifor

EE j

ji

i

ij νν

 

(112)

 
One common assumption is that wood materials are transversely isotropic. This means 
that the properties in the tangential and radial directions are modeled the same (i.e., 
E22 = E33, G12 = G13, and ν12 = ν13. This reduces the number of independent elastic 
constants to five (E11, E22, ν12, G12, and G23). Furthermore, the Poisson’s ratio in the 
isotropic plane, ν23, is not an independent quantity. It is calculated from the isotropic 
relationship ν = (E – 2G) / 2G, where E = E22 = E33 and G = G23. Transverse isotropy is 
a reasonable assumption because the difference between the tangential and radial 
properties of wood (particularly southern yellow pine and Douglas fir) is small in 
comparison with the difference between the tangential and longitudinal properties.  

Yield Surfaces 

The yield surfaces parallel and perpendicular to the grain are formulated from six 
ultimate strength measurements obtained from uniaxial and pure-shear tests on wood 
specimens:  

XT Tensile strength parallel to the grain 

XC Compressive strength parallel to the grain 
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YT Tensile strength perpendicular to the grain 

YC Compressive strength perpendicular to the grain 

S|| Shear strength parallel to the grain 

S⊥ Shear strength perpendicular to the grain 

The formulation is based on the work of Hashin.(27) 

Parallel Modes 

For the parallel modes, the yield criterion is composed of two terms involving two of the 
five stress invariants of a transversely isotropic material. These invariants are 111 σ=I  

and 2
13

2
124 σσ +=I . This criterion predicts that the normal and shear stresses are 

mutually weakening (i.e., the presence of shear stress reduces the strength below that 
measured in the uniaxial stress tests). Yielding occurs when f|| ≥ 0, where:  
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Perpendicular Modes  

For the perpendicular modes, the yield criterion is also composed of two terms involving 
two of the five stress invariants of a transversely isotropic material. These invariants are 
I2 = σ22 + σ33 and 3322

2
233 σσσ −=I . Yielding occurs when f⊥ ≥ 0, where:  
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Each yield criterion is plotted in three dimensions in figure 26 in terms of the parallel and 
perpendicular stresses. Each criterion is a smooth surface (no corners). 

Plastic Flow 

The plasticity algorithms limit the stress components once the yield criteria in equations 
111 and 112 are satisfied. This is done by returning the trial elastic stress state back to 
the yield surface. The stress and strain tensors are partitioned into elastic and plastic 
parts. Partitioning is done with a return mapping algorithm that enforces the plastic 
consistency condition. Separate plasticity algorithms are formulated for the parallel and 
perpendicular modes by enforcing separate consistency conditions. No input 
parameters are required. 
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Figure 26. Yield criteria for wood produce smooth surfaces in stress space. 

σLR 
σLT 

σL 

σR 
σT 

σTR 



 

 81

Hardening 

Wood exhibits prepeak nonlinearity in compression parallel and perpendicular to the 
grain. Separate translating yield surface formulations are modeled for the parallel and 
perpendicular modes, which simulate gradual changes in moduli. Each initial yield 
surface hardens until it coincides with the ultimate yield surface, as shown in figure 27. 
The initial location of the yield surface determines the onset of plasticity. The rate of 
translation determines the extent of nonlinearity. 
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(a) Initial and ultimate yield surfaces   (b) Stress-strain behavior 

Figure 27. Prepeak nonlinearity in compression is modeled with translating yield 
surfaces that allow user to specify hardening response. 

For each mode (parallel and perpendicular), the user inputs two parameters―the initial 
yield surface location in uniaxial compression, N, and the rate of translation, c. If the 
user wants prepeak nonlinearity to initiate at 70 percent of the peak strength, then the 
user would input N = 0.3, so that 1 – N = 0.7. If the user wants rapid hardening, then a 
large value of c is input (e.g., c = 1000). If the user wants gradual hardening, then a 
small value of c is input (e.g., c = 10).  

The state variable that defines the translation of the yield surface is known as 
backstress and is denoted by αij. Hardening is modeled in compression, but not shear, 
so the only backstress required for the parallel modes is α11. The value of the 
backstress is α11 = 0 upon initial yield and α11 = –N|| Xc at ultimate yield (in uniaxial 
compression). The maximum backstress occurs at ultimate yield and is equal to the 
total translation of the yield surface in stress space. The backstress components 
required for the perpendicular modes are α22 and α33. The value of the backstress sum 
is α22 + α33 = 0 upon initial yield and α22 + α33 = –N⊥ Yc at ultimate yield (biaxial 
compression without shear). 
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Damage 

Separate damage formulations are modeled for the parallel and perpendicular modes. 
These formulations are loosely based on the work of Simo and Ju.(21) If failure occurs in 
the parallel modes, then all six stress components are degraded uniformly. This is 
because parallel failure is catastrophic and will render the wood useless. If failure 
occurs in the perpendicular modes, then only three perpendicular stress components 
are degraded. This is because perpendicular failure is not catastrophic; the wood may 
continue to carry load in the parallel direction. Based on these assumptions, the 
following degradation model is implemented:  

 ))(),(max( || ⊥= ττ dddm  (115)

 )( |||| τdd =
 (116)

 11||11 )1( σσ d−=
 (117)

 2222 )1( σσ md−=  (118)

 3333 )1( σσ md−=  (119)

 12||12 )1( σσ d−=
 (120)

 13||13 )1( σσ d−=
 (121)

 2323 )1( σσ md−=  (122)
 
Here, each scalar damage parameter, d, transforms the stress tensor associated with 
the undamaged state, ijσ , into the stress tensor associated with the damaged state, σij. 

The stress tensor ijσ  is calculated by the plasticity algorithm (including viscoplasticity) 
prior to application of the damage model. Each damage parameter ranges from zero for 
no damage to approaching unity for maximum damage. Thus, 1 – d is a reduction factor 
associated with the amount of damage. Each damage parameter evolves as a function 
of a strain energy-type term. Mesh-size dependency is regulated via a length scale 
based on the element size (cube root of volume). Damage-based softening is brittle in 
tension, less brittle in shear, and ductile (no softening) in compression, as demonstrated 
in figure 28.  

Element erosion occurs when an element fails in the parallel mode and the parallel 
damage parameter exceeds d|| = 0.99. Elements do not automatically erode when an 
element fails in the perpendicular mode. A flag is available that, when set, allows 
elements to erode when the perpendicular damage parameter exceeds d⊥ = 0.99. 
Setting this flag (IFAIL) is not recommended unless excessive perpendicular damage is 
causing computational difficulties. 
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(a) Tensile softening 
 

 
 

(b) Shear softening 
 

 
 

(c) Compressive yielding 
 

Figure 28. Softening response modeled for parallel modes 
of southern yellow pine. 
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Rate Effects 

Data available in the literature for pine indicate that dynamic strength enhancement is 
more pronounced in the perpendicular direction than in the parallel direction.(16) 
Therefore, separate rate-effect formulations are modeled for the parallel and 
perpendicular modes. The formulations increase strength with increasing strain rate by 
expanding each yield surface: 

Parallel 
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)−(
& ||1 n η|| 

 Tension  

XC 
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)−(
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 Compression  
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(123)

Perpendicular 
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(124)

where: 

X and Y = static strengths 
X DYNAMIC and Y DYNAMIC = dynamic strengths 

Cε& (1-n)η = excess stress components 
 
The excess stress components depend on the value of the fluidity parameter, η; the 
stiffness, C; and the effective strain rate, ε& . When rate effects are requested via the flag 
IRATE = 1, the dynamic strengths are used in place of the static strengths in the yield 
surface formulations. 
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Setting n > 0 allows the user to model a nonlinear variation in dynamic strength with 
strain rate. Setting n = 0 allows the user to model a linear variation in dynamic strength 
with strain rate.  

2.5 WOOD MODEL OUTPUT 

One example output file is given here for completeness. It gives the output format for 
the PINE and FIR options. If the <BLANK> option is selected, then the lines for wood 
type through units are omitted. The example values printed are for saturated grade 1 
pine at room temperature in units of MPa, cm, and ms. 

Printed for PINE and FIR options only. 

Default Material Property Selection: 

 WOOD Wood type = 0.0000e+00 
  EQ. 0: Southern yellow pine (default) 
   EQ. 1: Douglas fir 
 
 MC  Moisture content (%) = 2.3000e+01 

 TEMP Temperature = 2.0000e+01 

 QT  Tension/shear quality factor = 0.4700e+00  

 QC   Compression quality factor = 0.6300e+00 

  Quality factor option = 0.0000e+00 
 
   EQ. 0: Grades 1, 1D, 2, 2D (default) 
  EQ. -1: DS-65 or SEL STR 
  EQ. -2: Clear wood 
  GT. 0: User-defined 
 
  Apply quality factors perpendicular = 1.0000e+00 
 
  EQ. 0: Yes (default) 
  EQ. 1: No (use clear wood strengths) 
 
 UNITS Units = 1.0000e+00 
  EQ. 0: GPa, mm, ms, kg/mm3, kN (default) 
  EQ. 1: MPa, mm, ms, g/mm3, N 
  EQ. 2: MPa, mm, s, Mg/mm3, N 
  EQ. 3: lbf/inch2, inch, s, lb-s2/inch4, lbf 
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Printed for all options. 

Control Parameters: 

 NPLOT  Plot parameter = 0.0000e+00 
    EQ. 0: Maximum of parallel and perpendicular damage (default) 
     EQ. 1: Perpendicular damage 
 
 ITERS  Number of plasticity algorithm iterations = 1.0000e+00 

 IRATE  Rate-effect option = 1.0000e+00 
EQ. 0: Rate effects off (default) 

    EQ. 1: Rate effects on 
 

 GHARD  Perfect plasticity override = 0.0000e+00 
  EQ. 0: Perfect plasticity (default) 
  GT. 0: Continuous hardening 
 
 IFAIL  Erode with perpendicular damage = 0.0000e+00 
  EQ. 0: No (default) 
  EQ. 1: Yes (not recommended) 
 
Stiffness: 

 EL  Parallel normal modulus   = 1.1350e+04 
 ET  Perpendicular normal modulus  = 2.4680e+02 
 GLT   Parallel shear modulus   = 7.1520e+02 
 GTR  Perpendicular shear modulus  = 8.7510e+01 
 νLT  Parallel major Poisson’s ratio  = 0.1568e+00 
 
Strength: 

 XT  Parallel tensile strength   = 4.0250e+01 
 XC  Parallel compressive strength  = 1.3330e+01 
 YT   Perpendicular tensile strength  = 2.0500e+00 
 YC  Perpendicular compressive strength = 4.0820e+00 
 S||  Parallel shear strength   = 6.2410e+00 
 S⊥  Perpendicular shear strength  = 1.2730e+01 
  
Damage:  

 Gf I ||  Parallel fracture energy in tension  = 4.2660e+01 
 Gf II ||  Parallel fracture energy in shear  = 8.8260e+01 
 B  Parallel softening parameter  = 3.0000e+01 
 dmax|| Parallel maximum damage   = 0.9999e+00 
 Gf I ⊥  Perpendicular fracture energy in tension = 4.0090e−01 
 Gf II ⊥  Perpendicular fracture energy in shear = 8.2950e−01 
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 D  Perpendicular softening parameter = 3.0000e+01 
 dmax⊥ Perpendicular maximum damage  = 0.9900e+00 
 
Rate Effects: 

 η||  Parallel fluidity parameter in tension/shear  = 0.0045e+00 
 ηc||  Parallel fluidity parameter in compression  = 0.0045e+00 
 n||  Parallel power      = 0.1070e+00 
 η⊥  Perpendicular fluidity parameter in tension/shear = 0.0962e+00 
 ηc⊥  Perpendicular fluidity parameter in compression = 0.0962e+00 
 n⊥  Perpendicular power     = 0.1040e+00 
 
Hardening: 

 N||  Parallel hardening initiation  = 0.5000e+00 
 c||  Parallel hardening rate   = 4.0000e+02 
 N⊥  Perpendicular hardening initiation  = 0.4000e+00 
 c⊥  Perpendicular hardening rate  = 1.0000e+02 
 
Orientation Options: 

AOPT     = 2.0000e+00 
 Orientation parameter #1  = 0.0000e+00 
 Orientation parameter #2  = 0.0000e+00 
 Orientation parameter #3  = 1.0000e+00 
 Orientation parameter #4  = 1.0000e+00 
 Orientation parameter #5  = 0.0000e+00 
 Orientation parameter #6  = 0.0000e+00 
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3. EXAMPLES MANUAL 

 
This section contains two sets of example problems that the user can review to become 
familiar with the use of the wood material model. The first set of problems are single-
element simulations in tension and compression, both parallel and perpendicular to the 
grain. The second problem is a bogie impact into a wooden post. 

3.1 SINGLE-ELEMENT SIMULATIONS 

Wood material model input is given in figure 29 for default pine parameters, and in 
figure 30 for user-specified input parameters. A complete input file, with nodes and 
elements, is given in appendix G. This file is for tensile loading of a single element 
parallel to the grain. To convert to compressive loading, change the sign of the ordinate 
under *DEFINE_CURVE at the bottom of the file. To convert to loading perpendicular to 
the grain, change the orientation vectors to [A1, A2, A3] = [1, 0, 0] and [D1, D2, D3] 
= [0, 0, 1]. 

 
Figure 29. Example wood model input for selection of default input 

parameter (option MAT_WOOD_PINE). 

Single-element stress-strain results are shown in figure 31 for saturated, room-
temperature clear wood pine. These results can be achieved using either the default 
input shown in figure 29 or the user-specified input shown in figure 30. Note that the 
peak strengths attained match the input strength parameters listed in figure 30. These 
are XT = 85.2 MPa, XC = 21.2 MPa, YT = 2.05 MPa, and YC = 4.08 MPa. The results are 
plotted with LS-POST as cross-plots of element z stress versus node 8 displacement. 
As additional exercises, the user can vary the moisture content (MC), temperature 
(TEMP), grade (QT, QC, and IQUAL), units, hardening (GHARD), and rate effects 
(IRATE with rate of loading) to examine how the default behavior of pine varies with 
these quantities. 
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Figure 30. Example wood model input for user specification 
of input parameters (option MAT_WOOD). 
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Figure 31. Example single-element stress-strain results for clear wood pine. 
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3.2 BOGIE IMPACT SIMULATION 

The wood model input is similar to that shown in figure 29, although units of GPa 
(UNITS = 0 with RO = 6.73-e07) and rate effects (IRATE = 1) are requested. In addition, 
the post is grade 1, rather than clear wood. The post is saturated along the entire 
length. The post is modeled with simplified boundary conditions to attain a fast run time.  

Bogie-post output results are shown in figures 32 and 33. The post breaks just below 
ground level. Damage occurs in the impact regime and in the region of post breakage. 
The post displacement is linear with time. The post cross-sectional force (between the 
impact point and ground level) reaches a peak of approximately 47 MPa within the first 
5 ms before decaying, in an oscillatory manner, back down to zero. The results are 
plotted with LS-POST. 

 
 

Figure 32. Deformed configuration of post at 40 ms, including fringes of damage. 
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Figure 33. Post deflection and cross-sectional force histories.
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APPENDIX A. MEASURED VARIABILITY OF SOUTHERN 
YELLOW PINE 

 

     
(a) 4-percent moisture content  (b) 8-percent moisture content 

 

     
 

(c) 12-percent moisture content      (d) Saturated 
 

Figure 34. Measured load displacement curves of southern yellow pine 
exhibit variability in tension parallel to the grain. 

Source:  Forest Products Laboratory (14). 
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(a) 4-percent moisture content   (b) 8-percent moisture content 

 

   
 

(c) 12-percent moisture content       (d) Saturated 
Figure 35. Measured load displacement curves of southern yellow pine 

exhibit variability in compression perpendicular to the grain. 
Source:  Forest Products Laboratory (14).
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APPENDIX B. QUADRATIC EQUATIONS FIT TO MOISTURE 
CONTENT DATA 

 

 
 
(a) Data         (b) Fit 

Figure 36. Effect of moisture content on tensile modulus parallel to the grain. 
Source: Forest Products Laboratory.(14) 

   

 
 
(a) Data     (b) Fit 

Figure 37. Effect of moisture content on tensile modulus perpendicular 
to the grain. Source: Forest Products Laboratory.(14) 
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(a) Data     (b) Fit 
Figure 38. Effect of moisture content on tensile strength parallel 

to the grain. Source: Forest Products Laboratory.(14) 

 

 
 

(a) Data     (b) Fit 
Figure 39. Effect of moisture content on tensile strength perpendicular 

to the grain. Source: Forest Products Laboratory.(14) 
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(a) Data     (b) Fit 
Figure 40. Effect of moisture content on compressive strength parallel 

to the grain. Source: Forest Products Laboratory.(14) 

 
 
  

 
 

(a) Data     (b) Fit 
Figure 41. Effect of moisture content on compressive strength perpendicular 

to the grain. Source: Forest Products Laboratory.(14) 
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(a) Data     (b) Fit 
Figure 42. Effect of moisture content on shear strength parallel 

to the grain. Source: Forest Products Laboratory.(14) 

No measurements were made for shear strength perpendicular to the grain. 
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(a) Data     (b) Fit 

 

Figure 43. Effect of moisture content on mode I fracture intensity. 
Source: Forest Products Laboratory.(14) 

 

 
 

(a) Data     (b) Fit 
 

Figure 44. Effect of moisture content on mode II fracture intensity. 
Source: Forest Products Laboratory.(14) 
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APPENDIX C. ANALYTICAL FORM OF CANDIDATE 
FAILURE CRITERIA 

 
C.1 REVIEW OF CRITERIA 

Numerous failure criteria available in the literature were reviewed and evaluated for 
modeling the yield strength of wood and composite materials. To our knowledge, a 
validated three-dimensional theory for modeling wood is not documented in the 
literature. However, numerous failure criteria have been documented for fiber-reinforced 
plastic (FRP) composites (e.g., see the survey by Nahas(28)). Composites are similar to 
wood because they are transversely isotropic materials with distinct failure modes in the 
parallel (fiber) and perpendicular (transverse fiber) directions. Therefore, many of the 
criteria originally developed for modeling composites were evaluated as candidates for 
modeling wood.  

The functional form of each failure criterion that was evaluated is given in section C.2. 
These include one limit and six interactive criteria. Both orthotropic and transversely 
isotropic criteria are reported. All criteria are stress-based criteria. The stresses are 
transformed to the principal material axes (L-T-R axes) before application of the failure 
criteria. Strain-based criteria were not evaluated because failure strains are not reported 
in the literature for wood. One cannot derive failure strains from stresses if the stress-
strain behavior is nonlinear, as it is for wood in compression. A brief summary of each 
criterion is given here:  

Maximum Stress (commonly applied limit theory): Failure occurs when any 
component of stress exceeds its corresponding strength. 

Tsai-Wu (tensor polynomial theory that was originally developed for anisotropic 
materials): It contains linear and quadratic stress terms. Seven coefficients must be 
defined for transversely isotropic applications. The noninteraction coefficients are 
determined from measured uniaxial and pure shear strengths. By noninteraction, one 
means terms that contain one component of stress (e.g., F1σ11). The interaction terms 
are determined from measured biaxial strengths. By interaction, one means terms that 
have two or more components of stress multiplied together (e.g., F12σ11σ22). 

Hoffman: Hoffman extended Hill’s distortional energy criterion for orthotropic materials 
to account for different strengths in tension and compression. The criterion contains 
linear and quadratic stress terms. Six coefficients are determined from uniaxial stress 
and pure shear tests. Biaxial strengths are not needed. 

Norris: Norris developed three yield criteria for mutually orthogonal planes. Each 
criterion contains quadratic stress terms (no linear terms). Nine coefficients are 
determined from uniaxial and pure shear tests. Tensile strengths are used when the 
corresponding stresses are tensile. Compressive strengths are used when the 
corresponding stresses are compressive. 
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Extended Yamada-Sun: Three yield criteria are reported for mutually orthogonal 
planes. Each criterion predicts that the normal and shear stresses are mutually 
weakening (the presence of shear stress reduces the strength below that measured in 
uniaxial stress tests). Nine coefficients are determined from uniaxial and pure shear 
tests.  

Hashin: Hashin formulated a quadratic stress polynomial in terms of the invariants of a 
transversely isotropic material. Separate formulations are identified for parallel and 
perpendicular modes by assuming that failure is produced by the normal and shear 
stresses acting on the failure plane. In addition, the parallel and perpendicular modes 
are subdivided into tensile and compressive modes. Assumptions include: (1) biaxial 
compressive strength perpendicular to the grain is much greater than the uniaxial 
compressive strength and (2) shear stress does not contribute to compressive failure 
parallel to the grain. All coefficients are determined from six uniaxial and shear 
strengths. 

Modified Hashin (extended form of Hashin’s criteria): More terms are retained in 
this modified form than in the original form because fewer assumptions are made 
regarding material behavior. All coefficients are determined from six uniaxial and shear 
strengths.  

C.2 FORM OF CRITERIA 

Here, we give the functional form of the various failure criteria that were evaluated in 
section C.1 for modeling the strength of wood. Both orthotropic and transversely 
isotropic criteria are reported. 

The following notation is used for orthotropic criteria: 

 XT Tensile strength in longitudinal direction 
 XC Compressive strength in longitudinal direction 
 YT Tensile strength in tangential direction 
 YC Compressive strength in tangential direction 
 ZT Tensile strength in radial direction 
 ZC Compressive strength in radial direction 
 Sxy Shear strength parallel to the grain in L-T plane 
 Sxz Shear strength parallel to the grain in L-R plane  
 Syz Shear strength perpendicular to the grain in T-R plane  

The following notation is used for transversely isotropic criteria: 

 XT Tensile strength parallel to the grain 
 XC Compressive strength parallel to the grain 
 YT Tensile strength perpendicular to the grain 
 YC Compressive strength perpendicular to the grain 
 S|| Shear strength parallel to the grain  
 S⊥ Shear strength perpendicular to the grain 
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Here, X, Y, and Z are the strengths in the longitudinal, tangential, and radial directions, 
respectively, and S is the shear strength. The subscripts T and C refer to the tensile and 
compressive components, respectively. 

Maximum Stress: This is one of the most common limit theories. Failure occurs when 
any component of stress in the principal material directions exceeds its corresponding 
strength. Its application to wood as an orthotropic material is: 

 )0( 1111 >≥ σσ TX  (125)

 )0( 1111 <≥ σσ CX  (126)

 )0( 2222 >≥ σσ TY  (127)

 )0( 2222 <≥ σσ CY  (128)

 )0( 3333 <≥ σσ TZ  (129)

)0( 3333 <≥ σσ CZ  (130)

 XYS≥12σ  (131)

 XZS≥13σ  (132)

 YZS≥23σ  (133)
 
Nine independent modes of failure are predicted: tensile, compressive, and shear failure 
parallel to the grain; tensile, compressive, and shear failure in the tangential direction; 
and tensile, compressive, and shear failure in the radial direction. The number of failure 
modes reduces to six for a transversely isotropic material. 

Tsai-Wu: Tsai and Wu developed a stress tensor component polynomial theory as a 
failure criterion for anisotropic materials.(29) A reduced form of their criterion is applicable 
to transversely isotropic materials. The criterion contains both linear and quadratic 
stress terms. Failure occurs when the following equation is satisfied: 
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Seven coefficients must be defined for wood modeled as a three-dimensional 
transversely isotropic material. Six coefficients (F1, F2, F11, F22, F23, and F66) are 
determined from uniaxial and shear tests on unidirectional specimens. Each of the 
coefficients F1, F2, F11, F22, and F23 includes contributions from both tensile and 
compressive strengths: 
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One coefficient, F12, must be determined from biaxial tests, a variety of which are 
available. Different biaxial tests produce different values of F12. The choice was to fit F12 
to off-axis compression test data at 45 degrees:  

 )()(112 66221121212 FFFFFF ++−+−=
σσ  

(141)

 
Here, σ is the biaxial strength measured in the principal material directions. It is equal to 
half the ultimate strength measured in off-axis tests at 45 degrees. If σ = XcYc / (Xc + Yc), 
then the Tsai-Wu model will be in agreement with Hankinson’s two-dimensional formula 
plotted in ultimate stress versus grain angle space. The failure envelope is a smooth 
surface in stress space. Only the onset of failure is predicted, not the mode of failure. 

Hoffman: Hill generalized von Mises’ distortional energy criterion for isotropic materials 
to include orthotropic materials.(30) Failure occurs when the following equation is 
satisfied:  
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The six coefficients (A, B, D, E, F, and G) are determined from uniaxial stress and pure 
shear tests. However, Hill’s orthotropic criterion is not directly applicable to wood 
materials because it does not model different strengths in tension and compression. 
Hoffman modified Hill’s quadratic criterion by adding linear stress terms that take into 
account different strengths in tension and compression.(31) Failure occurs when the 
following equation is satisfied:  
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This criterion predicts a parabolic increase in strength with confining pressure. The nine 
coefficients are determined from uniaxial stress and pure shear tests. The criterion is 
readily simplified for materials with transversely isotropic strength values. One 
advantage of this criterion is that the interaction terms are not based on biaxial data, so 
it is easier to fit than the Tsai-Wu criterion. One disadvantage of this criterion (and the 
Tsai-Wu criterion) is that the onset of failure is predicted, but not the mode of failure.  

Norris: Tsai and Azzi simplified the Hill criterion to account for transverse isotropy and 
plane stress conditions of composite materials:(32)  
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Tsai showed that the criterion is applicable to composites with different properties in 
tension and compression. Tensile strengths are used when the corresponding stresses 
are tensile; compressive strengths are used when the corresponding stresses are 
compressive. Tsai also developed two additional equations for mutually orthogonal 
planes (similar to equation 153) for failure analysis of three-dimensional materials.(27)  

Similarly, Norris reports three yield criteria for mutually orthogonal planes. His criteria 
are similar to the Tsai-Azzi criteria except that the interaction terms are not biased 
toward one particular strength. In addition, he applied his criteria to wood materials, not 
composites. Norris’s criterion for the 1-2 (L-R) plane is as follows:  
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Similar equations can be written for the 1-3 and 2-3 planes by proper interchange of 
subscripts. This criterion for modeling wood was evaluated by using tensile strengths 
when the corresponding stresses are tensile, and compressive strengths when the 
corresponding stresses are compressive. For each of the three equations, three 
combinations of tensile and compressive stresses are possible. Therefore, nine modes 
of failure are modeled. 

Extended Yamada-Sun: Yamada and Sun developed a plane stress criterion for 
composites that is a degenerative form of the Tsai-Azzi and Norris criteria.(33) Failure 
occurs when the following equation is satisfied:  
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This criterion predicts that the normal and shear stresses are mutually weakening (the 
presence of shear stress reduces the strength below that measured in uniaxial stress 
tests). We extended this concept to three dimensions for application to wood as either 
an orthotropic or transversely isotropic material:  
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Tensile strengths are used when the corresponding stresses are tensile; compressive 
strengths are used when the corresponding stresses are compressive. Six independent 
modes of failure are predicted: tensile and compressive failure in the longitudinal 
direction, tensile and compressive failure in the tangential direction, and tensile and 
compressive failure in the radial direction. The application of shear stress contributes to 
failure in each of these modes and is mutually weakening. 

Hashin: The Tsai-Wu and Hoffman interactive failure criteria predict when a given set of 
stresses will produce failure, but they do not predict the mode of failure. Hashin 
developed a set of interactive failure criteria in which distinct failure modes are modeled. 
He applied his failure criteria to fiber composite materials. Since most fiber composites 
are transversely isotropic (e.g., wood), Hashin defined a general failure criterion in 
terms of the stress invariants of a transversely isotropic material (27).  The five stress 
invariants (I1, I2, I3, I4, and I5) are:  
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Hashin’s three-dimensional failure criterion is a quadratic stress polynomial of the 
general form:  
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(164)

 
The I5 invariant does not appear in the criterion because only linear and quadratic terms 
are retained in this polynomial.  

To identify distinct failure modes, Hashin argued that failure is produced by the normal 
and shear stresses acting on the failure plane. For failure parallel to the grain, the failure 
plane is the 2-3 plane, acted on by stresses σ11, σ12, and σ13. The perpendicular 
stresses (σ22, σ23, and σ33) do not contribute to parallel failure. The implicit assumption 
here is that the perpendicular stresses do not impede compression bucking; thus, an 
interaction mechanism is not required (the term C12I1I2 is neglected).  
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In perpendicular-to-the-grain failure, failure occurs in any plane with axes parallel and 
perpendicular to the grain. The failure plane is acted on by stresses σ22, σ33, σ23, σ12, 
and σ13. The implicit assumption here is that the stress parallel to the grain (σ11) does 
not contribute to perpendicular failure because this stress is carried almost entirely by 
the fibers. 

By applying these assumptions to the general criterion in equation 164, Hashin 
developed specific yield criteria for the parallel and perpendicular modes: 
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Perpendicular Mode 
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Failure mechanisms are different for tensile and compressive modes, so Hashin further 
divided each criterion into tensile and compressive modes. 

Tension Parallel: Hashin assumed that tensile and shear stresses are mutually 
weakening; therefore, both contribute to tensile failure. Data from direct pull and biaxial 
tests are needed to solve for both coefficients (Af and Bf). If data from a direct pull test 
are the only data available, then one can solve for either Af or Bf. The failure surface 
remains smooth and elliptical if one solves for Bf and neglects Af. Failure occurs when 
the following equation is satisfied: 
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This criterion is the same as our extension of the Yamada-Sun criterion. 

Compression Parallel: If compressive and shear stresses are assumed to be mutually 
weakening, then one can develop a compression parallel criterion similar to that for 
tension. However, Hashin argued that there is no physically reasonable method for 
including the effect of shear stress, at least for composites. Therefore, he represents 
parallel compressive failure in simple maximum stress form:  
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Tension Perpendicular: Data from direct pull and biaxial tests are needed to solve for 
both coefficients (Am and Bm). If data from a direct pull test are the only data available, 
then one can solve for either Am or Bm. The failure surface remains smooth and elliptical 
if one solves for Bm and neglects Am. Failure occurs when the following equation is 
satisfied:  
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Compression Perpendicular: Hashin argued that the biaxial compressive strength 
(Ycc) of composites is much greater than the uniaxial compressive strength (Yc). 
Therefore, he solved for both coefficients (Am and Bm) and retained only first-order 
terms in Yc /Ycc. Failure occurs when the following equation is satisfied: 
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The Modified Hashin criteria predict four independent modes of failure: tensile and 
compressive failure parallel to the grain, and tensile and compressive failure 
perpendicular to the grain. Although Hashin applied these criteria to fiber composites, 
these criteria were also evaluated for wood. A plane stress version is currently 
implemented in model 22 of LS-DYNA, along with an augmentation by Chang that takes 
into account nonlinear shear stress-strain behavior.  

Modified Hashin: In addition to the composite criteria proposed by Hashin, a simple 
modification of the Hashin criteria was evaluated. 

Tension and Compression Parallel: Here, it is assumed that shear stress weakens 
wood in compression as well as in tension. In this case, the tensile and compressive 
yield criteria have the following form:  
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Tension and Compression Perpendicular: It is not clear whether the biaxial 
compressive strength of wood is greater or lesser than the uniaxial compressive 
strength. The only available data for southern yellow pine are uniaxial stress data, so no 
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assumptions are made regarding the relative strengths in biaxial and uniaxial 
compression. In this case, the tensile and compressive yield criteria have the following 
form: 

 

⎩
⎨
⎧

<+
>+

=≥
+

+
−

+
+

⊥⊥ 0
0

1
)()()(

3322C

3322T
2

2
13

2
12

2
3322

2
23

2

2
3322

σσ
σσσσσσσσσ

forY
forY

X
SSY  

(172)

 
The Modified Hashin criteria predict four independent modes of failure: tensile and 
compressive failure parallel to the grain, and tensile and compressive failure 
perpendicular to the grain. 

Hankinson: Hankinson developed an empirical formula that is frequently applied to off-
axis wood tests in two dimensions.(16,34) Goodman and Bodig extended the formula to 
three dimensions.(7) Their three-dimensional formula predicts the ultimate compressive 
strength (σult) of wood relative to the both the grain (θ) and ring angles (φ). The three-
dimensional formula has the following form: 
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where Fφ varies sinusoidally with the ring angle between the relative strength in the 
tangential direction (FT = Y/X) and the relative strength in the radial direction (FR = Z/X). 
Fφ has the following form:  
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Here, K is an empirical constant that is typically 0.4 for softwoods. The last term on the 
right of 172 is a sinusoidal correction to the straight line interpolation between the 
tangential (Y) and radial (Z) strengths. This correction is illustrated in figure 45. It can be 
compared with the data shown later in figure 48. 

Comparisons of Hankinson’s three-dimensional formula with Douglas fir test data were 
previously shown in figure 2. Hankinson’s formula predicts large reductions in strength 
when the load is inclined at a small angle to the grain or ring, in agreement with test 
data.  
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Hankinson model 

Figure 45. Compressive strength variation of clear wood is readily modeled by a 
sinusoidal correction in the R-T plane. Source: Krieger Publishing Company.(16) 

For a transversely isotropic material with no variations in strength with the ring angle 
(FT = FR = Fφ), the three-dimensional formula reduces to its two-dimensional form:  
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Although Hankinson’s formula has been shown to provide good fits to off-axis test data, 
it is not a general-purpose formulation that can be applied to other types of tests. Thus, 
it is not suitable for use in finite element codes. However, it is reported here so that it 
can be compared with other criteria to help in their evaluation.  
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APPENDIX D. GRAPHICAL COMPARISON OF CANDIDATE 
FAILURE CRITERIA 

 
D.1 COMPARISON RESULTS 
 
Each failure criterion was evaluated by comparing it with available test data and with 
other criteria. Comparisons include: 

• Off-axis strength predictions. 
 

• Parallel-to-the-grain strength predictions. 
 

• Perpendicular-to-the-grain strength predictions. 
 
Details of the comparisons are given in section D.2. The results of the comparisons are 
briefly given here: 

• The failure stresses for all candidate criteria agree for states of uniaxial 
stress in the principal material directions. The criteria disagree on what 
constitutes failure for biaxial and triaxial stress states.  
 

• Nearly sufficient uniaxial data are available for evaluating the candidate 
criteria. The exception is the lack of a perpendicular shear strength 
measurement for southern yellow pine. Insufficient biaxial and triaxial data 
are available to thoroughly evaluate each criterion. Biaxial and triaxial data 
are limited to off-axis test data for Douglas fir. 
 

• The Modified Hashin and Tsai-Wu criteria fit off-axis test data the best. All 
candidate failure criteria were compared with off-axis test data in two 
planes: the L-T and T-R planes. In the L-T plane, all criteria except 
Maximum Stress and Hashin accurately predict the trend observed in off-
axis test data. In the R-T plane, no criterion accurately predicts the trend 
observed in off-axis test data. However, the transversely isotropic criteria 
(Hashin, Modified Hashin, and Tsai-Wu) provide the best fit. These 
comparisons suggest that the Modified Hashin and Tsai-Wu criteria are 
the best candidates.  
 

• The Modified Hashin criterion is more practical than the Tsai-Wu criterion 
because it identifies four distinct failure modes. The Hashin, Yamada-Sun, 
Norris, and Maximum Stress criteria also identify the mode of failure. On the 
other hand, the Tsai-Wu and Hoffman criteria predict the onset of failure, but 
not the mode of failure. This makes it difficult to model postpeak softening, 
because the extent of softening depends on the failure mode (tensile, 
compression, or shear) and failure direction (parallel or perpendicular).  
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• Simultaneous and/or sequential failure in perpendicular and parallel 
modes is modeled by those criteria that predict distinct failure modes 
(Modified Hashin, Hashin, Yamada-Sun, Norris, and Maximum Stress). 
This is because these criteria are formulated with multiple equations and 
more than one failure equation can be satisfied at one time. Those criteria 
formulated with a single equation (Tsai-Wu and Hoffman) cannot make 
such predictions. 
 

• Most criteria produce smooth failure surfaces in stress or stress invariant 
space. Having a smooth failure surface is important when applying the 
plasticity algorithm because nonsmooth surfaces (with corners) require 
additional coding and add computational intensity. The only nonsmooth 
surface that was evaluated is the Hashin criterion, and it occurs in the 
perpendicular modes. Most criteria, such as the Modified Hashin, produce 
segmented surfaces when cross-plots are made involving both the parallel 
and perpendicular modes; however, this is not a computational issue 
because plasticity will be treated separately for each mode. The Modified 
Hashin criterion produces a smooth surface for the parallel modes and a 
separate smooth surface for the perpendicular modes. 
 

• Most criteria model little or no interaction between the parallel and 
perpendicular modes. This means that parallel strength is not significantly 
affected by perpendicular confinement. Five of the seven criteria predict 
little or no increase in parallel compressive strength with perpendicular 
confinement. The Modified Hashin criterion is one of the five criteria. The 
two exceptions are the Hoffman and Tsai-Wu criteria. Four of the seven 
criteria predict little or no increase in parallel tensile strength with 
perpendicular confinement. The Modified Hashin criterion is one of the 
four criteria. The three exceptions are the Hoffman, Tsai-Wu, and Norris 
criteria. Interaction terms could readily be added to the Modified Hashin 
criterion if test data become available that suggest that an interaction 
mechanism is appropriate.  
 

• The transversely isotropic criteria conservatively model parallel failure 
under parallel shear stress. These criteria (Modified Hashin, Hashin, 
Yamada-Sun, and Tsai-Wu) predict shear failure at lower shear stresses 
than the orthotropic criteria. The lower shear strength results from 
simultaneous application of two shear stress components. 
 

• The strength predictions of the transversely isotropic criteria (Modified 
Hashin, Hashin, Yamada-Sun, and Tsai-Wu) are realistic under 
transformation of stress in the isotropic plane. These criteria recognize 
σT = –σR as a state of pure shear stress; the orthotropic criteria do not.  
 

• The transversely isotropic criteria are more flexible in modeling failure and 
yielding in the perpendicular modes than the orthotropic criteria. This is 
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because the transversely isotropic predictions are sensitive to the value of 
the perpendicular shear strength selected by the analyst. 
 

D.2 GRAPHICAL COMPARISONS 

The criteria are plotted using the transversely isotropic strength values previously 
reported in table 4 for southern yellow pine at 12-percent moisture content. 

In some plots, the various failure criteria are compared with Hankinson’s formula. 
Hankinson’s formula is an empirical equation that is frequently fit to off-axis 
compression tests of wood in two dimensions. Goodman and Bodig extended the 
formula to three dimensions.(7) Although Hankinson’s formula fits off-axis test data fairly 
well, it is not a general-purpose formulation that can be applied to other types of tests. 
This is because it is explicitly formulated in terms of the off-axis grain and the ring 
angles. Thus, it is not suitable for use in finite element codes. However, it is reported 
here so that it can be compared with the various criteria to help in their evaluation.  

D.3 OFF-AXIS STRENGTH COMPARISONS 
 
Off-axis strength is characterized by performing uniaxial tests with the symmetry axis 
(L-T-R axis) oriented at-angle to the loading axis, as schematically shown in figure 46. 
The measured strength depends on two off-axis angles―the angle θ between the grain 
and loading axis, and the angle φ between the rings and loading axis. A grain angle of 
θ = 0 degrees means that the load is being applied in the longitudinal direction. A grain 
angle of θ = 90 degrees means that the load is being applied in the perpendicular 
direction. If φ = 0 degrees when θ = 90 degrees, then the load is being applied in the 
tangential direction. If φ = 90 degrees when θ = 90 degrees, then the load is being 
applied in the radial direction.  

The various failure criteria are compared here with off-axis test data (i.e., Hankinson’s 
formula). Two sets of comparisons are made. In the first, the off-axis strength in the L-T 
plane (parallel and perpendicular to the grain) is examined. In the second, the off-axis 
strength in the T-R plane (perpendicular to the grain only) is examined. 
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Figure 46. Geometry of an off-axis test specimen. 

Source: Krieger Publishing Company.(16) 

 
D.3.1 Off-Axis Strength in the L-T Plane 

Data: Off-axis compressive strength data for Douglas fir were previously shown in the 
three-dimensional plot of figure 2.(7) Also shown is the three-dimensional Hankinson 
formula. The comparison is good, although Hankinson’s formula tends to underestimate 
the measured strength, particularly for grain angles between 15 and 45 degrees. 
Hankinson’s formula also tends to underestimate the measured strength of Engelmann 
spruce, oak, and aspen (not shown), as reported by Goodman and Bodig.(7)  

Although Hankinson’s formula is an empirical fit to wood data, the good fit does not 
validate the formula. This is because longitudinal, tangential, radial, and shear stresses 
all act on the wood in the material coordinate system; however, only longitudinal, 
tangential, and radial stresses are assumed to contribute to compressive failure in 
Hankinson’s formula. The relative effects of the normal and shear stresses are not 
established.  

Strength Comparisons: The measured off-axis strengths are not tabulated in the 
paper by Goodman and Bodig and are difficult to extract from figure 2.(7) In addition, no 
off-axis test data are available from FPL for southern yellow pine. Therefore in figure 
47(a), the failure criteria are compared with Hankinson’s formula rather than test data 
(keep in mind that Hankinson’s formula tends to underestimate the measured strength). 
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The comparisons are for the ultimate compressive strength of southern yellow pine 
calculated as a function of grain angle for φ = 0 degrees.  

All but two criteria, the Maximum Stress and Hashin criteria, are in good agreement with 
Hankinson’s formula. In fact, most criteria predict a slightly greater strength than 
Hankinson’s formula, a trend consistent with the measured data. On the other hand, the 
Maximum Stress criterion significantly overestimates the strength of the wood compared 
with Hankinson’s formula. The Maximum Stress criterion predicts an increase in off-axis 
strength with increasing grain angle between 0 and 23 degrees. This is opposite the 
trend predicted by Hankinson’s formula and observed in off-axis tests of various wood 
species. In addition, the Hashin criterion overestimates the strength of wood compared 
with Hankinson’s formula for small grain angles and underestimates the strength at 
moderate grain angles. These comparisons suggest that the Maximum Stress and 
Hashin criteria are not good candidates for modeling the off-axis strength of wood.  

In addition to compressive strength, tensile strength is also plotted as a function of grain 
angle in figure 47(b). The primary reason these tensile comparisons were made was to 
check the Tsai-Wu criterion. One coefficient of the Tsai-Wu criterion must be fit to 
biaxial strength data. The criterion was fit to the off-axis compressive strength predicted 
by Hankinson’s formula at 45 degrees. Even though the fit was made in compression, 
the Tsai-Wu criterion is in agreement with Hankinson’s formula and the other interactive 
criteria in tension. Although Goodman and Bodig did not report comparisons of 
Hankinson’s formula with wood test data in tension, various authors suggest that 
Hankinson’s formula is a reasonable fit in tension as well. 
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(a) Compressive strength 

 

 
(b) Tensile strength 

 
Figure 47. Most of the interactive failure criteria are in agreement 

with Hankinson’s formula for the off-axis strength 
of southern yellow pine in the L-T plane. 
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Failure Mode Comparisons: Although most of the interactive criteria accurately predict 
the off-axis compressive strength, it is not known if the criteria predict the correct failure 
mode. This is because the measured failure mode was not reported by Goodman and 
Bodig.(7) We expect the failure to be in the parallel modes at low grain angles and in the 
perpendicular modes at high grain angles. Five of the failure criteria (Hashin, Modified 
Hashin, Yamada-Sun, Norris, and Maximum Stress) predict distinct failure modes.  

Considering the Modified Hashin criterion, for grain angles less than about 24 degrees, 
the predicted mode is compression failure parallel to the grain. For grain angles greater 
than about 24 degrees, the predicted mode is compression failure perpendicular to the 
grain. This change in mode is evident by the discontinuity in slope in figure 47(a). 
Failure modes are readily identified because Hashin formulated separate criteria 
(equations) for the parallel and perpendicular modes. Two of the criteria, the Tsai-Wu 
and Hoffman criteria, do not distinguish the mode of failure because they are formulated 
with a single equation.  

D.3.2 Off-Axis Strength in R-T Plane 

Data: Off-axis test data are also useful for evaluating the assumption of transverse 
isotropy. Transversely isotropic strength values were previously reported in table 4 for 
pine and in table 5 for fir. This means that no distinction is made between the strengths 
in the tangential and radial directions, so only one measurement is made and labeled as 
perpendicular. The assumption of transverse isotropy is assessed by examining the off-
axis strength data measured by Goodman and Bodig in the R-T (isotropic) plane. These 
data are shown in the two-dimensional plot of figure 48. Goodman and Bodig measured 
the ultimate strength at various ring angles, holding the grain angle constant at 
θ = 90 degrees. These data are for four different wood species, one of which is Douglas 
fir.  

If the wood species in figure 48 were transversely isotropic, then the tangential strength 
would be equal to the radial strength and the data would form a straight line between 0 
and 90 degrees. The data at 0 degrees is the tangential strength. The data at 90 
degrees is the radial strength. For Douglas fir, the radial strength is about 85 percent of 
the tangential strength, which is reasonably close. However, all of the data follow a 
similar pattern―the off-axis strength measured at 45 degrees is less than that 
measured at 0 or 90 degrees. For Douglas fir, the strength at 45 degrees is about 
60 percent of the tangential strength.  
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Figure 48. Effect of ring angle variation at 90-degree grain angle on 
the relative compression strength of four wood species. 

Source: Society of Wood Science and Technology.(7) 

Although strength varies with the ring angle for these wood species, the variation is not 
great when compared with the compressive strength in the longitudinal direction. For 
Douglas fir, the tangential strength at 0 degrees is about 10 percent of the longitudinal 
strength. The off-axis strength at 45 degrees is about 6 percent of the longitudinal 
strength. Therefore, the variation in perpendicular strength is about 4 percent of the 
parallel strength. The assumption of transverse isotropy in strength is probably 
reasonable, especially if wood posts fail catastrophically in the parallel modes rather 
than in the perpendicular modes.  

Strength Comparisons: Hankinson’s formula in the R-T plane is an excellent fit to 
wood data, as previously shown in figure 48. All failure criteria are compared with 
Hankinson’s formula in the R-T plane in figure 49. None of the criteria is in agreement 
with Hankinson’s formula, except in uniaxial compression at 0 and 90 degrees. At 
45 degrees, the ultimate strength predicted by the various failure criteria is greater than 
that predicted by Hankinson’s formula. Hankinson’s formula suggests a 40-percent 
reduction in strength at 45 degrees. The Tsai-Wu, Hashin, and Modified Hashin criteria 
predict no reduction in strength at 45 degrees and no variation with ring angle. This is 
because they were derived from the invariants of a transversely isotropic material and 
the strength of a transversely isotropic material does not vary with ring angle. All other 
orthotropic criteria predict an increase in ultimate strength at 45 degrees (in poor  
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Figure 49. Failure criteria comparison for perpendicular modes 
as a function of the ring angle. 

agreement with Hankinson’s formula and the trend observed in the measured data 
(figure 48)). It is interesting to note that the orthotropic failure criteria do not predict 
transversely isotropic behavior even though transversely isotropic strength values are 
used. These comparisons suggest that the best criteria for modeling biaxial 
compressive strength perpendicular to the grain are the transversely isotropic criteria 
(Tsai-Wu, Hashin, and Modified Hashin). 

Transformations: Failure criteria are applied to stresses in the principal material 
directions. The off-axis strength, σult, is transformed into stresses in principal material 
directions:  
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where: 

m = cosφ 
n = sinφ 
φ = ring angle between the tangential direction and loading axis 
 

(F) 
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The state of stress at 45 degrees is biaxial, with σT = σult / 2, σR = σult / 2, and 
σTR = σult / 2. Referring back to the Douglas fir data in figure 48, one sees that the equal 
biaxial compressive stress perpendicular to the grain is 60 percent of the tangential 
strength, which, in turn, is half of the applied stress. Therefore, the biaxial compressive 
strength of Douglas fir is 30 percent of the uniaxial (tangential) compressive strength, at 
least in the presence of shear stress. On the other hand, the transversely isotropic 
failure criteria predict a biaxial compressive strength that is 50 percent of the uniaxial 
compressive strength, also in the presence of shear stress. 

To accurately measure the biaxial compressive strength, one would need data from 
biaxial tests performed with and without the application of shear stress. If one argues 
that shear stress is mutually weakening, as it is for composites, then one would expect 
the biaxial compressive strength measured with shear stress to be less than that 
measured without shear stress. Some failure criteria predict such a trend, as discussed 
in section C.3.  

D.4 PARALLEL-TO-THE-GRAIN STRENGTH COMPARISONS 

Wood posts are observed to fail in tension or shear parallel to the grain. Therefore, it is 
particularly important to accurately model the critical combinations of stresses that 
produce failure in the parallel modes. Although ultimate stress versus grain angle plots 
from off-axis tests include assessment of parallel failure, they reveal few differences 
among the various criteria. A more exacting assessment is attained with biaxial stress 
plots. The biaxial stress plots discussed in subsequent paragraphs indicate that 
significant differences in strength are predicted by the various criteria. These differences 
are revealed in three sets of stress plots: 

• Longitudinal stress versus perpendicular stress. 
 

• Longitudinal stress versus parallel shear stress. 
 

• Longitudinal stress versus combined stress (perpendicular plus parallel shear 
stress). 

 

D.4.1 Biaxial Comparisons of Longitudinal Versus Confining Stress 

Strength Comparisons: The combinations of longitudinal and confining stresses that 
satisfy the various failure criteria are compared in the biaxial strength plot of figure 50 
for southern yellow pine. By confining stress, we mean the sum of the tangential and 
radial stresses. This sum is one of the invariants of a transversely isotropic material. 
The sum was obtained for the specific case of equal tangential and radial stresses. This 
figure is plotted with the stresses positive in tension.  

Stress states that lie on the vertical axes (σT + σR = 0) are uniaxial stress states. When 
the confining stress is zero, each curve intersects the vertical axis twice―once in 
tension (positive) and once in compression (negative). These intersections are the 
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longitudinal strengths in uniaxial tension and compression. Stress states that lie on the 
horizontal axes (σL = 0) are biaxial stress states. When the longitudinal stress is zero, 
each curve (except Hoffman) intersects the horizontal axis twice―once in tension and 
once in compression. These intersections are twice the perpendicular strengths in equal 
biaxial tension and compression. Stress states that do not lie on the vertical or 
horizontal axes are triaxial stress states. All criteria are in agreement for states of 
uniaxial stress. Uniaxial strength measurements are available for fitting the criteria. The 
criteria disagree on what constitutes failure or yielding for states of biaxial and triaxial 
stress. Biaxial and triaxial strength measurements are not currently available for fitting 
the criteria. Biaxial and triaxial test data are needed to validate one or more of the 
proposed criteria. 

 
 

Figure 50. Predicted effect of perpendicular confinement and extension on the 
longitudinal strength of southern yellow pine in tension and compression. 

Failure Mode Comparisons: All criteria plotted in figure 50 are closed, but not 
necessarily smooth surfaces.6 The failure surfaces that are smooth are the Tsai-Wu and 
Hoffman criteria. This is because failure is modeled by a single formula or equation. The 
drawback of these criteria is that only the onset of failure is predicted, not the mode of 
failure. This means that when a particular combination of stresses indicates that failure 
or yielding has occurred, the criteria do not indicate the type of failure (tensile, 
compressive, or shear) or its direction (parallel or perpendicular). It is important to know 
the type and direction of failure so that the correct softening response (brittle or ductile) 
and fracture energy are modeled, as discussed in section 1.7.  

                                                 
6 Although the Hoffman criterion appears to model infinite biaxial compressive strength perpendicular to 
the grain, it actually models an extremely large biaxial compressive strength (off the scale of the figure). 
 

(C) 

(F) 
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The nonsmooth criteria indicate both the type and direction of failure. This is because 
failure is modeled by more than one equation. For example, the Modified Hashin 
criterion models four modes of failure because four different failure equations are 
satisfied on different portions of the failure surface, which is shaped like a square. 
These modes are compressive yielding perpendicular to the grain (left side of square), 
tension failure parallel to the grain (top side of square), tension failure perpendicular to 
the grain (right side of square), and compressive yielding parallel to the grain (bottom 
side of square).  

All criteria, except Hoffman and Tsai-Wu, predict no increase, or a small increase in 
compressive strength with compressive confinement (refer to the lower left-hand 
quadrant of figure 50). The Hoffman criterion predicts a large increase in compressive 
strength with confinement. The Tsai-Wu criterion predicts a reduction in strength with 
confinement. The only strength data available for comparison that include confinement 
are the off-axis test data; however, such data also include contributions from shear 
stress. The effect of shear stress on longitudinal strength is discussed in subsequent 
paragraphs.  

D.4.2 Biaxial Comparisons of Longitudinal Versus Combined Stress 

The combinations of longitudinal and tangential stresses that satisfy the various failure 
criteria are compared in the biaxial strength plot of figure 51(a) for southern yellow pine. 
These curves include a contribution from the parallel shear stress and were calculated 
for the specific case of σLT = σT, with σLR = 0 and σR = 0. Also included in this figure is 
one point from Hankinson’s formula that represents off-axis test data measured at 
θ = 45 degrees. Almost all criteria, expect the Maximum Stress criterion, are in good 
agreement with the Hankinson point, as expected from previous comparisons with off-
axis test data. 

The failure criteria differ most in the upper left-hand quadrant of figure 50. This is the 
quadrant that predicts the longitudinal tensile strength as a function of perpendicular 
confinement and parallel shear. The two criteria that differ most are the Tsai-Wu and 
Norris criteria. The Tsai-Wu criterion predicts an increase in longitudinal tensile strength 
with compressive confinement and shear, while the Norris criterion predicts a large 
decrease in longitudinal tensile strength with compressive confinement and shear. The 
remaining criteria predict little or no reduction in strength with combined confinement 
and shear. The small reduction in strength predicted by the Hashin, Modified Hashin, 
and Yamada-Sun models is a result of the application of shear. This is evident by 
comparing the failure criteria in figure 51(a), which were calculated with shear, with the 
failure criteria in figure 51(b), which were calculated without shear. No data are 
available in this quadrant for evaluating each model. More clear wood data are needed 
to understand the relative contributions of shear stress and perpendicular confining 
stress on the longitudinal strength in tension.  
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D.4.3 Biaxial Comparisons of Longitudinal Versus Shear Stress 

All clear wood strength data available for southern yellow pine or Douglas fir are a 
measurement of either σLT or σLR, or, more generally, of parallel shear strength. The 
combined effect of applying two parallel shear stress components simultaneously has 
not been measured. Wood posts have been observed to fail in a shear mode, so it is 
important to establish the correct shear strength, particularly if failure is caused by 
simultaneous application of two shear components. The effects of unilateral and 
bilateral shear stresses on longitudinal strength are examined here.  

The combinations of longitudinal and shear stresses that satisfy the various failure 
criteria are compared in the biaxial strength plot of figure 52 for southern yellow pine. By 
shear stress, we mean the sum of the squares of the L-T and L-R parallel shear stress 

terms )( 22
LRLT σσ + . This sum is one of the invariants of a transversely isotropic 

material. The square root is taken to retain units of stress. Two plots are shown. In one 
plot, the sum was obtained for the specific case of σLT = σLR. In the other plot, the sum 
was obtained for the specific case of σLR = 0. 
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(a) Calculated with parallel shear stress equal to tangential stress 
 

 
 

(b) Calculated without parallel shear stress 
 

Figure 51. Predicted effect of parallel shear and tangential stresses on the 
longitudinal strength of southern yellow pine in tension and compression. 
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(a) Calculated with parallel shear stress equal to tangential stress 
 

 
 

(b) Calculated without parallel shear stress 
 

Figure 52. Predicted effect of parallel shear invariant on the longitudinal strength 
of southern yellow pine in tension and compression. 
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In figure 52(a), the transversely isotropic and orthotropic criteria predict different shear 
strengths. The orthotropic criteria (Maximum Stress and Norris) predict a combined 
shear strength that is 40 percent greater than that predicted by the transversely 
isotropic criteria. 

The transversely isotropic criteria predict a value of 16.8 MPa, which is equal to the 
shear strength measured parallel to the grain for either the L-T or L-R shear stress 
component. The individual values of σLT and σLR do not affect the parallel shear strength 
of a transversely isotropic material, only the sum of their squares. This is because this 
sum is an invariant of a transversely isotropic material and the parallel shear stress 
components are not included in the other invariants used in the transversely isotropic 
models. However, this sum is not an invariant if the criterion is orthotropic, so the 
specific values of each stress component affect the predicted strength. For the specific 
case of equal shear stress in the L-T and L-R planes, this sum is equal to 23.7 MPa.  

These comparisons demonstrate that the combined shear strength predicted by 
transversely isotropic criteria is lower than that predicted by orthotropic criteria. Use of 
transversely isotropic criteria in guardrail post calculations could result in a lower shear 
strength than that predicted by orthotropic criteria. Planned guardrail post calculations 
will examine the value of each shear stress component and check the sensitivity of the 
results to shear strength.  

D.5 PERPENDICULAR-TO-THE-GRAIN STRENGTH COMPARISONS 

Wood guardrail posts fail catastrophically in the parallel modes (tension and shear). 
However, failure and yielding in the perpendicular modes could precede parallel failure 
without causing catastrophic failure of the guardrail post. Failure in the perpendicular 
modes occurs at much lower strengths than failure in the parallel modes. It is important 
to accurately model the perpendicular failure criteria in order to limit the perpendicular 
stresses.  

This section demonstrates that significant differences exist in the perpendicular strength 
predicted by the various failure criteria. In addition, the transversely isotropic criteria 
have an advantage over the orthotropic criteria in that they are more flexible in fitting 
data. This is demonstrated by comparing the candidate failure criteria with each other 
and with Hankinson’s formula. Two sets of biaxial stress plots are evaluated:  

• Radial versus tangential stress. 
 

• Shear versus tangential stress. 
 
The biaxial stress plots provide a more exacting assessment of the perpendicular failure 
criteria than the off-axis strength predictions previously discussed. 
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D.5.1 Biaxial Comparisons of Radial Versus Tangential Stress 

The biaxial strength of southern yellow pine calculated without the application of shear 
stress is examined here. The combinations of radial and tangential stresses that satisfy 
the various failure criteria are compared in the biaxial strength plot of figure 53 for 
southern yellow pine. Stress states that lie on the horizontal (σR = 0) and vertical 
(σT = 0) axes are uniaxial stress states. Stress states that do not lie on the horizontal 
and vertical axes are biaxial stress states. When the radial stress is zero, each curve 
intersects the horizontal axis twice―once in tension (positive) and once in compression 
(negative). These intersections are the tangential strengths in uniaxial tension and 
compression. When the tangential stress is zero, each curve intersects the vertical axis 
twice―once in tension and once in compression. These intersections are the radial 
strengths in uniaxial tension and compression. The failure stresses for all criteria are in 
agreement for states of uniaxial stress. The criteria disagree on what constitutes failure 
for states of biaxial stress. Here, three biaxial states are examined: equal biaxial 
compression, equal biaxial tension, and pure shear.  

 

Figure 53. Predicted strength of southern yellow pine perpendicular 
to the grain (no perpendicular shear stress applied). 

 

Equal Biaxial Compression: States of equal biaxial compression and tension (σT = σR) 
are visualized as a diagonal line extending from the lower left-hand to the upper right-
hand corners of the plot. There are three main clusters of curves in biaxial compression 
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(lower left-hand quadrant). First, the Maximum Stress, Norris, and Yamada-Sun criteria 
predict a biaxial compressive strength equal to the uniaxial compressive strength. 
Second, the Hoffman criterion predicts a biaxial compressive strength that is much 
greater (off the scale of the plot) than the uniaxial compressive strength. Third, the 
Hashin, Modified Hashin, and Tsai-Wu criteria predict biaxial compressive strengths that 
are less than the uniaxial compressive strength. No strength data are available in biaxial 
compression for comparison with the failure criteria that do not include contributions 
from shear stress. 

Equal Biaxial Tension: There are two main clusters of curves in biaxial tension (upper 
right-hand quadrant). First, the Maximum Stress, Norris, and Yamada-Sun criteria 
predict a biaxial tensile strength that is equal to the uniaxial tensile strength. In addition, 
the Hoffman criterion predicts a biaxial tensile strength that is approximately equal to 
the uniaxial tensile strength. The biaxial tensile strength predicted by the Hoffman 
criterion is sensitive to the strengths used to fit the model. Second, the Hashin, Modified 
Hashin, and Tsai-Wu criteria predict a biaxial tensile strength that is less than the 
uniaxial tensile strength. No data are available in biaxial tension for comparison with the 
failure criteria.  

Pure Shear: If wood is assumed to be transversely isotropic, then the R-T plane is the 
isotropic plane. Mohr’s circle indicates that equal normal stresses of opposite sign 
(σ22 = –σ33), calculated in the material principal directions, can be transformed into a 
state of pure shear stress. States of shear can be visualized as a diagonal line 
extending from the upper left-hand to the lower right-hand corners of the plot. There are 
three main clusters of curves in shear. First, the Maximum Stress and Yamada-Sun 
criteria predict a shear strength that is equal to the uniaxial tensile strength 
perpendicular to the grain. Second, the Hashin, Modified Hashin, and Tsai-Wu criteria 
predict a shear strength that is equal to the shear strength measured perpendicular to 
the grain (S⊥). A value for S⊥ is not reported in table 4; therefore, it is assumed that S⊥ is 
equal to 1.4 times the parallel shear strength (S||) and is thus greater than the uniaxial 
tensile strength. These transversely isotropic criteria explicitly include σT = –σR as a 
state of shear with strength S⊥. Third, the Norris and Hoffman criteria predict shear 
strengths that are less than the uniaxial tensile strength and less than S⊥. These criteria 
do not explicitly recognize σT = –σR as a state of shear stress upon transformation. No 
strength data are available for σT = –σR for comparison with the failure criteria.  

Assessment: One advantage of the transversely isotropic criteria is that the shape of 
the failure surface is readily modified as a function of S⊥. Figure 54 displays the Hashin, 
Modified Hashin, and Tsai-Wu criteria for three different values of S⊥. Although S⊥ is 
hard to measure, its inclusion in the failure criteria is not only realistic, but it provides us 
with flexibility for modeling failure and yielding in the perpendicular modes. The 
orthotropic criteria, plotted in this plane, do not vary with S⊥ and, therefore, lack the 
flexibility of the transversely isotropic criteria.  
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Figure 54. Shape of the failure surface is sensitive to perpendicular shear 

strength if the criteria are transversely isotropic. 

 

D.5.2 Biaxial Comparisons of Shear Versus Tangential Stress 

The purpose of this section is to determine if the biaxial strength is affected by the 
application of shear stress. The comparisons indicate that most criteria predict a 
reduction in biaxial strength with increasing shear stress. No test data are available to 
validate this trend. 

The combinations of shear and tangential stresses that satisfy the various failure criteria 
are compared in the biaxial strength plots of figure 55. One plot was calculated with 
S⊥ = 1.4 MPa and S|| = 23.7 MPa, while the other was calculated with S⊥ = 0.33 MPa 
and S|| = 5.58 MPa. This figure allows us to examine the effect of shear stress on 
perpendicular compressive strength. The only data available to the author for evaluating 
the failure criteria under states of biaxial stress with shear are off-axis test data, such as 
that previously shown in figure 2 for Douglas fir. As previously discussed, off-axis 
strength data include a contribution from shear stress. 

The stress combinations are plotted for the specific case of equal biaxial compression 
(σR = σT). Stress states that lie on the horizontal (σRT = 0) and vertical (σT = 0) axes are 
biaxial and pure shear stress states, respectively. When the shear stress is zero, each 
curve intersects the horizontal axis twice―once in tension (positive) and once in 
compression (negative). These intersections are the biaxial strengths in tension and 
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compression. When the tangential stress is zero, each curve intersects the vertical axis 
twice―once in tension and once in compression.  

These intersections are the pure shear strengths. All of the criteria, except Maximum 
Stress and Hoffman, predict a reduction in biaxial strength with the application of shear 
stress. 

Also plotted is a solid black dot in the lower left-hand quadrant of each plot where the 
tangential stress is 30 percent of the uniaxial compressive strength and σTR = σR = σT. 
This is the biaxial stress state attained in off-axis tests at 45 degrees and predicted by 
Hankinson’s formula. Recall that Hankinson’s formula is in excellent agreement with test 
data in the T-R plane for a variety of woods. As expected, all failure criteria predict 
biaxial strengths that are greater than that predicted by Hankinson’s formula.  
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(a) Calculated with S⊥ = 23.7 MPa 

 

 
(b) Calculated with S⊥ = 5.58 MPa 

Figure 55. Combinations of perpendicular and shear stresses 
that satisfy the failure criteria in the isotropic plane. 
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APPENDIX E. DERIVATION OF CONSISTENCY PARAMETER 
FOR PLASTICITY ALGORITHM 

 
Plasticity is modeled by enforcing separate consistency conditions for the parallel and 
perpendicular modes. The goal of each consistency condition is to partition the total 
strain increments into elastic and plastic components:  

p
ij

e
ijij εεε Δ+Δ=Δ

 
(177)

 

The superscripts e and p indicate the elastic and plastic components, respectively. The 
total strain increments (Δεij) are calculated by the finite element code from the dynamic 
equations of motion and the time step. Once this partition is known, then the stress 
increments are updated from the elastic strain increments:  

)(1 p
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n
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n
ij C εεσσ Δ−Δ+=+

 
(178)

 

Here, n denotes the nth time step in the finite element analysis.  

E.1 CHECK FOR YIELDING 

The partition into elastic and plastic components requires two steps. The first step is to 
check for yielding. This is done by temporarily updating the stress components from the 
incremental strains by assuming that the entire strain increment is elastic:  

 
klijkl

n
ij

n
ij C εσσ Δ+=+1*

 
(179)

 
These updated stresses are called the trial elastic stresses ( *

ijσ ). The trial elastic stress 

invariants ( ),,, *
4

*
3

*
2

*
1 IIII are updated from the trial elastic stresses. The value of the 

yield function is evaluated from the trial elastic invariants and is denoted as f *. The new 
stress state is elastic if f * ≤ 0 and plastic if f * > 0.  

E.2 CALCULATE CONSISTENCY PARAMETER 

The second step is to enforce the consistency condition if f *> 0. Enforcement of the 
consistency condition requires an assumption about the direction of plastic flow. It is 
assumed that the plastic strain increments are normal to the yield surface:  
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nij

p
ij

f
σ

λε
∂
∂

Δ=Δ

 

(180)

 
where Δλ is a proportionality constant known as the consistency parameter. 

This assumption is known as an associated flow rule, or normality condition. Use of a 
potential function other than the yield function in equation 180 results in a 
nonassociated flow rule. Recent studies reported by Pucik(35) suggest that rate-
independent models with nonassociated flow lead to spurious (non-unique) dynamic 
solutions, so only associated flow is proposed for the present model.  

The plasticity algorithm calculates Δλ by enforcing the plastic consistency condition. 
This condition is expressed as:  

 01 =−=Δ + nn fff  
(181)

 

where f is the yield surface function at time increments n to n + 1. The stress state at the 
beginning of the time step lies on the yield surface, thus, f n = 0. The stress state at the 
end of the time step is returned to the yield surface by the plasticity algorithm, thus, 
f n+1 = 0. Therefore, Δf = 0.  

The solution of the consistency condition in equation 181 determines Δλ, which, in turn, 
determines the partitioning of the total strain rate into elastic and plastic components. 
The stresses are updated from the elastic strain components. Separate Δλ solutions are 
proposed for the parallel and perpendicular modes.  

Parallel Modes 

The consistency condition is derived in terms of the invariants rather than the stresses, 
because the parallel failure criterion in equation 13 is formulated in terms of two 
transversely isotropic stress invariants. For the purposes of this derivation, the parallel 
failure criterion from equation 13 is defined as f||(I1,I4) ≥ 0, with:  
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A first-order Taylor series expansion of the consistency condition 0||
1

|||| =−=Δ + nn fff  

from time increment n to n + 1 gives:  
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Expansion of the stress invariant increments gives:  
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(185)

 
where *

1IΔ  and *
4IΔ  are the trial elastic increments calculated with Δλ|| = 0. Substitution 

of the updates from equations 184 and 185 into the consistency condition in equation 
183 results in the following expression for Δλ||:  
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The expression in the numerator is recognized as the first-order Taylor series expansion 
of *

||f , where ),( *
4

*
1||

*
|| IIff =  is the value of the failure criterion calculated from the trial 

elastic invariants. Therefore, the expression for Δλ|| reduces to:  
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Perpendicular Modes 

The perpendicular failure criterion in equation 14 is derived in terms of the invariants 
rather than the stresses. The perpendicular failure criterion is defined as f⊥(I2,I3) = 0, 
with:  
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Expansion of the consistency condition Δf⊥ = 0 gives:  
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The stress invariant updates are:  
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Substitution of these updates into the consistency condition gives the following express 
for Δλ⊥. 
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E.3 UPDATE STRESSES 

The third step is to update the stresses. There are two options: (1) a purely elastic 
update and (2) an elastoplastic update. If the trial elastic stress state lies inside the 
failure surface (f *< 0), then Δλ = 0 and the stress state is purely elastic. In this case, the 
stress update from equations 178 and 179 is trivial:  

 1*1 ++ = n
ij

n
ij σσ

 
(193)

 
If the trial elastic stress state lies outside the failure surface (f * > 0), then Δλ ≠ 0 and the 
stress state is elastoplastic. In this case, equations 178, 179, and 180 combine to give:  
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APPENDIX F. DERIVATION OF LIMITING FUNCTION FOR 
HARDENING MODEL 

 

The functions that restrict the motion of each yield surface so that they cannot translate 
outside the ultimate surfaces are labeled G|| and G⊥ for the parallel and perpendicular 
modes, respectively. Each function is derived from the yield surface definition and 
hardening stress update. The limiting function for the parallel modes is derived here.  

The desired attributes of the limiting function are G|| = 1 at initial yield and G|| = 0 at 
ultimate yield. Hardening is modeled in compression, but not shear or tension, so the 
only stress component with hardening is σ11. The initial yield strength in compression is 
defined as 11σ , and the ultimate strength in compression is defined as F

11σ . The 
relationship between these strengths is:  

 )1( ||1111 NF −= σσ
 

(195)
 

where 1 – N|| is the user-supplied reduction factor. For combined stress states, the 
ultimate yield strength from equation 13 is:  
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(196)

 
For the case of uniaxial compressive stress, the ultimate yield strength is c

F X=11σ .  

The longitudinal stress update with hardening is:  

 111111 ασσ +=  
(197)

 
where α11 is the hardening stress (backstress). At ultimate yield, this relationship 
becomes:  

 max
111111 ασσ +=F

 
(198)

 
where max

11α  is the maximum backstress that can be attained. As previously defined, 
F
11σ  is the total stress with hardening (at ultimate yield) and 11σ  is the stress without 

hardening (at initial yield).  
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Substitution of equation 198 into equation 195 and rearranging gives:  
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(199)

 
The above function has the desired attribute in that it equals zero when the stress state 
lies on the ultimate yield surface. Thus, one defines:  
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(200)

 
The value of the limiting function is G|| = 1 at initial yield because α11 = 0 at initial yield. 
The value of the limiting function is G|| = 0 at ultimate yield because max

1111 αα = from 
equation 199. Thus, G|| limits the growth of the backstress as the ultimate yield surface 
is approached. 
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APPENDIX G. SINGLE-ELEMENT INPUT FILE 
 

 
Figure 56. Single-element input file. 
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Figure 57. First continuation of single-element input file. 
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Figure 58. Second continuation of single-element input file. 
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